Mathematics

Triangular modular curves

Speaker: 
Juanita Duque Rosero
Date: 
Thu, Oct 23, 2025
Location: 
PIMS, University of Calgary
Conference: 
UCalgary Algebra and Number Theory Seminar
Abstract: 

Triangular modular curves are a generalization of modular curves and arise as quotients of the complex upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves naturally parameterize hypergeometric abelian varieties, making them interesting arithmetic objects. In this talk, we will focus on the Borel-kind triangular modular curves. We will show that when restricting to prime level, there are finitely many such curves of any given genus, and there is an algorithm to enumerate them. Time permitting, we will explore generalizations to composite level. This is joint work with John Voight.

Class: 

Herbivory and temperature mediate coral reef halo dynamics

Speaker: 
Annie Innes-Gold
Date: 
Wed, Oct 22, 2025
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
UBC Math Biology Seminar Series
Abstract: 

‘Reef halos’ are rings of sand, barren of vegetation, encircling reefs. However, the extent to which various biotic (e.g., herbivory) and abiotic (e.g., temperature, nutrients) factors drive changes in halo prevalence and size remains unclear. The objective of this study was to explore the effects of herbivore biomass, primary productivity, temperature, and nutrients on reef halo presence and width. First, we conducted a field study using artificial reef structures and their surrounding halos, finding that halos were more likely to be observed with high herbivorous fish biomass, and halos were larger under high temperatures. There was a distinct interaction between herbivorous fish biomass and temperature, where at high fish biomass, halos were more likely to be observed under low temperatures. Second, we incorporated environmental drivers into a consumer-resource model of halo dynamics. Certain formulations of temperature-dependent vegetation growth caused halo width and fish density to change from a fixed to an oscillating system, supporting the idea that environmental drivers can cause temporal fluctuations in halo width. Our unique combination of field-based and mechanistic modeling approaches has enhanced our understanding of the role of environmental drivers in grazing patterns, which will be particularly important as climate change causes shifts in marine systems worldwide.

Class: 

Lagrangians, Palettes, and Uniform Turan Densities

Speaker: 
Dylan King
Date: 
Thu, Oct 23, 2025
Location: 
PIMS, University of Victoria
Online
Zoom
Conference: 
PIMS-UVic Discrete Math Seminar
Abstract: 

The Turan density of a forbidden hypergraph F is the largest edge density a large hypergraph H can have without containing any copy of F, and determining this number for various F is a notoriously difficult problem. One on-ramp to this question (from Erdos and Sos) is to furthermore require that the hyperedges of H are distributed nearly uniformly across the vertices, giving the uniform Turan density of F. All known examples of such uniformly dense H avoiding some F follow the so-called “palette” construction of Rodl. In this talk we will introduce each of these notions before discussing our main result, that any palette can be obtained as an extremal construction for some finite family of forbidden subgraph F, which will require the tools of hypergraph regularity and Lagrangians. As an application we can obtain some (interesting) new values as the uniform Turan density of forbidden families.

Based on joint work with Simon Piga, Marcelo Sales, and Bjarne Schuelke.

Class: 

Saturation in deterministic and random graphs

Speaker: 
Behruz Tayfeh-Rezaie
Date: 
Wed, Oct 22, 2025
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
Lethbridge Number Theory and Combinatorics Seminar
Abstract: 

Fix a positive integer $n$ and a graph $F$. A graph $G$ with $n$ vertices is called $F$-saturated if $G$ contains no subgraph isomorphic to $F$ but each graph obtained from $G$ by joining a pair of nonadjacent vertices contains at least one copy of $F$ as a subgraph. The saturation function of $F$, denoted $\mathrm{sat}(n, F)$, is the minimum number of edges in an $F$-saturated graph on $n$ vertices. This parameter along with its counterpart, i.e. Turan number, have been investigated for quite a long time.

We review known results on $\mathrm{sat}(n, F)$ for various graphs $F$. We also present new results when $F$ is a complete multipartite graph or a cycle graph. The problem of saturation in the Erdos-Renyi random graph $G(n, p)$ was introduced by Korandi and Sudakov in 2017. We survey the results for random case and present our latest results on saturation numbers of bipartite graphs in random graphs.

Class: 

Periods and Quantization

Speaker: 
Brent Pym
Date: 
Fri, Oct 24, 2025
Location: 
PIMS, University of Regina
Online
Conference: 
University of Regina PIMS Distinguished Lecture
Abstract: 

A number is called a "period" if it can be expressed as the volume of a region in Euclidean space, defined by polynomial inequalities with rational coefficients. Many famous constants, such as π, log(2) and special values of the Riemann zeta function, are periods. Consequently, periods play an important role in many parts of mathematics and science. For example, they arise naturally when relating the mathematics of classical and quantum mechanics (Poisson geometry and noncommutative algebra, respectively), via a procedure known as "deformation quantization". It turns out that algebraic geometry endows periods with a wealth of rich and surprising structure, such as a "motivic Galois group" of symmetries, which constrains their properties and facilitates their calculation. I will give an introduction to this circle of ideas, emphasizing their role in recent developments in deformation quantization.

Class: 
Subject: 

Mathematical Models of Tobacco Use Dynamics: Products, Flavors, and Networks

Speaker: 
Clinton H. Durney
Date: 
Wed, Oct 8, 2025
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
UBC Math Biology Seminar Series
Abstract: 

Mathematical biology offers powerful tools to tackle pressing problems at the interface of health and public policy. In this talk, I will share two vignettes demonstrating how mathematical and simulation modelling can be applied to tobacco regulatory science. The first uses a Markov state transition framework to capture population-level dynamics of two tobacco products, each with a flavour option. This structure highlights the challenges of modelling high-dimensional systems, parameter inference from sparse data, and representing policy interventions as modifications to initiation, cessation, and product switching rates. The second vignette focuses on social network modelling, where adolescent tobacco use is primarily shaped by peer influence and network structure. In this setting, stochastic processes and graph-based models describe how behaviours propagate and stabilise within adolescent populations. Together, these examples illustrate how applied mathematics can bridge data and policy in public health.

Class: 

Algebraic models for functor calculus

Speaker: 
Niall Taggart
Date: 
Tue, Oct 7, 2025
Location: 
PIMS, University of British Columbia
Online
Zoom
Abstract: 

There is a striking and useful analogy between equivariant homotopy theory and functor calculus. In the equivariant setting, Greenlees conjectured that the category of rational G-spectra has an algebraic model - meaning it is equivalent to the derived category of an abelian category with desirable finiteness properties. This talk will examine the functor calculus counterpart of this conjecture in (potentially) more than one flavour of functor calculus. (Joint work with D. Barnes and M. Kedziorek.)

Class: 
Subject: 

Vanishing Sums of Roots of Unity: from Integer Tilings to Projections of Fractal Sets

Speaker: 
Caleb Marshall
Date: 
Wed, Oct 8, 2025
Location: 
PIMS, University of Lethbridge
Online
Zoom
Conference: 
Lethbridge Number Theory and Combinatorics Seminar
Abstract: 

A vanishing sum of roots of unity (VSRU) is a finite list $z_1,\ldots,z_K$ of $N$-th complex roots of unity whose sum is zero. While there are many simple examples—including the famous "beautiful equation" of Euler, $e^{i \pi} + 1 = 0$—such sums become extremely complex as the parameter $N$ attains more complex prime power divisors (and we will see several classical examples illustrating this idea, as well as new examples from my work).

One fruitful line of inquiry is to seek a quantitative relationship between the prime divisors of $N$, their associated exponents, and the cardinality parameter $K$. A theorem of T.Y. Lam and K.H. Leung from the early '90's states: $K$ must always be (at least) as large as the smallest prime dividing $N$. This generalizes the well known observation that that sum of all $p$-th roots of unity (where $p$ is any prime number) must vanish; and, one notices that Euler's equation is one example of this fact.

In this talk, we will discuss two significant strengthenings of this result (one due to myself and I. Łaba, another due to myself, G. Kiss, I. Łaba and G. Somlai), which are derived from complexity measurements for polynomials with integer coefficients which have many cyclotomic polynomial divisors. As applications, we give connections in two other areas of mathematics. The first is in the study of integer tilings: additive decompositions of the integers $Z = A+B$ as a sum set, where each integer is represented uniquely. The second application is to the Favard length problem in fractal geometry, which asks for bounds upon the average length of the projections of certain dynamically-defined fractals onto lines.

This talk is based upon my individual work, as well as my joint work with I. Łaba, as well as my joint work with G. Kiss, I. Łaba and G. Somlai. All are welcome, and the first 15-20 minutes will include introductory ideas and examples for all results discussed in the latter portion of the talk.

Class: 

Modelling and calibrating the outbreak of an infectious disease in a small population

Speaker: 
JC Loredo-Osti
Date: 
Wed, Sep 24, 2025
Location: 
PIMS, University of British Columbia
Conference: 
UBC Math Biology Seminar Series
Abstract: 

The many ways to model an infectious disease go from simple predator-prey Lotka-Volterra compartmentalised models to highly dimensional models. These models are also commonly expressed as the solution to a system of deterministic differential equations. One issue with models that are highly parametrised, which makes them unsuitable for the early stages of an outbreak, is that estimation with a few data points may be impractical. In terms of sampling, small populations are peculiar, e.g., one may find very effective contact tracing along quite noisy data collection and management due to the lack of resources, and a scarcity of methodological developments crafted for those populations. In this presentation, I will argue that in small jurisdictions, stochastic branching and self-exciting processes or variations of basic compartmentalised models are more relevant because of the volatile nature of the disease dynamics, particularly at early stages of an outbreak. Then, we will focus on continuous-time Markov chain compartmentalised models and their parameter estimation through the likelihood. Finally, we comment on the connection of SIR-like models with Hawkes processes. For those unable to attend in person, you can join via Zoom using the link below.

Class: 

Complexity of Lagrangian submanifolds

Speaker: 
Octav Cornea
Date: 
Thu, Apr 17, 2025
Location: 
PIMS, University of Regina
Online
Conference: 
University of Regina PIMS Distinguished Lecture
Abstract: 

Lagrangian submanifolds are a central object of study in symplectic topology. Their rigidity properties have been uncovered via Floer theory since the early ’90’s. The talk will briefly review the subject, in particular how triangulated category structures naturally arise in this context through work of Donaldson, Kontsevich, Fukaya, and others. Further, will be discussed the more recent, natural role of persistence theory, in the sense common in data science. Finally, we will outline how complexity measurements based on persistence methods reflect topological and dynamical invariants, such as topological entropy.

Class: 
Subject: 

Pages