Number Theory

Generalized valuations and idempotization of schemes

Speaker: 
Cristhian Garay
Date: 
Mon, Feb 6, 2023
Location: 
PIMS, University of Lethbridge
Conference: 
Lethbridge Number Theory and Combinatorics Seminar
Abstract: 

Cristhian Garay (CIMAT Guanajuato, Mexico)

Classical valuation theory has proved to be a valuable tool in number theory, algebraic geometry and singularity theory. For example, one can enrich spectra of rings with new points coming from valuations defined on them and taking values in totally ordered abelian groups.

Totally ordered groups are examples of idempotent semirings, and generalized valuations appear when we replace totally ordered abelian groups with more general idempotent semirings. An important example of idempotent semiring is the tropical semifield.

As an application of this set of ideas, we show how to associate an idempotent version of the structure sheaf of a scheme, which behaves particularly well with respect to idempotization of closed subschemes.

This is a joint work with Félix Baril Boudreau.

Class: 

The second moment of symmetric square L-functions over Gaussian integers

Speaker: 
Olga Balkanova
Date: 
Wed, Apr 5, 2023
Location: 
PIMS, University of Lethbridge
Abstract: 

We prove an explicit formula for the first moment of Maass form symmetric square L-functions defined over Gaussian integers. As a consequence, we derive a new upper bound for the second moment. This is joint work with Dmitry Frolenkov.

Class: 

Exceptional Chebyshev's bias over finite fields

Speaker: 
Alexandre Bailleul
Date: 
Wed, Mar 22, 2023
Location: 
PIMS, University of Lethbridge
Online
Zoom
Abstract: 

Chebyshev's bias is the surprising phenomenon that there is usually more primes of the form 4n+3 than of the form 4n+1 in initial intervals of the natural numbers. More generally, following work from Rubinstein and Sarnak, we know Chebyshev's bias favours primes that are not squares modulo a fixed integer q compared to primes which are squares modulo q. This phenomenon also appears over finite fields, where we look at irreducible polynomials modulo a fixed polynomial M. However, in the finite field case, there are a few known exceptions to this phenomenon, appearing as a result of multiplicative relations between zeroes of certain L-functions. In this work, we show, improving on earlier work by Kowalski, that those exceptions are rare. This is joint work with L. Devin, D. Keliher and W. Li.

Class: 

Euler's divergent series and primes in arithmetic progressions

Speaker: 
Anne-Maria Ernvall-Hytönen
Date: 
Wed, Mar 8, 2023
Location: 
PIMS, University of Lethbridge
Online
Zoom
Conference: 
Analytic Aspects of L-functions and Applications to Number Theory
Abstract: 

Euler's divergent series $\sum_{n>0} n!z^n$ which converges only for $z = 0$ becomes an interesting object when evaluated with respect to a p-adic norm (which will be introduced in the talk). Very little is known about the values of the series. For example, it is an open question whether the value at one is irrational (or even non-zero). As individual values are difficult to reach, it makes sense to try to say something about collections of values over sufficiently large sets of primes. This leads to looking at primes in arithmetic progressions, which is in turn raises a need for an explicit bound for the number of primes in an arithmetic progression under the generalized Riemann hypothesis.
During the talk, I will speak about both sides of the story: why we needed good explicit bounds for the number of primes in arithmetic progressions while working with questions about irrationality, and how we then proved such a bound.

The talk is joint work with Tapani Matala-aho, Neea Palojärvi and Louna Seppälä. (Questions about irrationality with T. M. and L. S. and primes in arithmetic progressions with N. P.)

Class: 

A new explicit bound for the Riemann zeta function

Speaker: 
Ghaith Hiary
Date: 
Wed, Mar 1, 2023
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
Analytic Aspects of L-functions and Applications to Number Theory
Abstract: 

I give a new explicit bound for the Riemann zeta function on the critical line. This is joint work with Dhir Patel and Andrew Yang. The context of this work highlights the importance of reliability and reproducibility of explicit bounds in analytic number theory.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar

Class: 

A logarithmic improvement in the Bombieri-Vinogradov theorem

Speaker: 
Alisa Sedunova
Date: 
Wed, Feb 8, 2023
Location: 
PIMS, University of Lethbridge
Abstract: 

We improve the best known to date result of Dress-Iwaniec-Tenenbaum, getting ($\log
x)^2$ instead of $\left(log x\right)^(5/2)$. We use a weighted form of Vaughan's identity, allowing a smooth truncation inside the procedure, and an estimate due to Barban-Vehov and Graham related to Selberg's sieve. We give effective and non-effective versions of the result.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar?authuser=0

Class: 

An explicit error term in the prime number theorem for large x

Speaker: 
Daniel Johnston
Date: 
Wed, Jan 25, 2023
Location: 
PIMS, University of Lethbridge
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

In 1896, the prime number theorem was established, showing that π(x) ∼ li(x). Perhaps the most widely used estimates in explicit analytic number theory are bounds on |π(x)-li(x)| or the related error term |θ(x)-x|. In this talk we discuss methods one can use to obtain good bounds on these error terms when x is large. Moreover, we will explore the many ways in which these bounds could be improved in the future.

Class: 

Kummer Theory for Number Fields

Speaker: 
Antonella Perucca
Date: 
Mon, Jan 23, 2023
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
Lethbridge Number Theory and Combinatorics Seminar
Abstract: 

Antonella Perucca (University of Luxembourg, Luxembourg)

Kummer theory is a classical theory about radical extensions of fields in the case where suitable roots of unity are present in the base field. Motivated by problems close to Artin's primitive root conjecture, we have investigated the degree of families of general Kummer extensions of number fields, providing parametric closed formulas. We present a series of papers that are in part joint work with Christophe Debry, Fritz Hörmann, Pietro Sgobba, and Sebastiano Tronto.

Class: 

Least quadratic non-residue and related problems

Speaker: 
Enrique Treviño
Date: 
Wed, Jan 18, 2023
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

TBA

Class: 

Zeros of linear combinations of L-functions near the critical line

Speaker: 
Youness Lamzouri
Date: 
Wed, Jan 11, 2023
Location: 
PIMS, University of Lethbridge
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

In this talk, I will present a recent joint work with Yoonbok Lee, where we investigate the number of zeros of linear combinations of $L$-functions in the vicinity of the critical line. More precisely, we let $L_1, \dots, L_J$ be distinct primitive $L$-functions belonging to a large class (which conjecturally contains all $L$-functions arising from automorphic representations on $\text{GL}(n)$), and $b_1, \dots, b_J$ be real numbers. Our main result is an asymptotic formula for the number of zeros of $F(\sigma+it)=\sum_{j\leq J} b_j L_j(\sigma+it)$ in the region $\sigma\geq 1/2+1/G(T)$ and $t\in [T, 2T]$, uniformly in the range $\log \log T \leq G(T)\leq (\log T)^{\nu}$, where $\nu\asymp 1/J$. This establishes a general form of a conjecture of Hejhal in this range. The strategy of the proof relies on comparing the distribution of $F(\sigma+it)$ to that of an associated probabilistic random model.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar?authuser=0

Class: 

Pages