Bounds on the logarithmic derivative and the reciprocal of the Riemann zeta function are studied as they have a wide range of applications, such as computing bounds for Mertens function. In this talk, we are mainly concerned with explicit bounds. Obtaining decent bounds are tricky, as they are only valid in a zero-free region, and the constants involved tend to blow up as one approaches the edge of the region, and a potential zero. We will discuss such bounds, their uses, and the computational and analytic techniques involved. Finally, we also show how to obtain a power savings in the case of the reciprocal of zeta.
Lethbridge Number Theory and Combinatorics Seminar
Abstract:
A directed variant of the famous Oberwolfach problem, the directed Oberwolfach problem considers the following scenario. Given $n$ people seated at $t$ round tables of size $m_1,m_2,\ldots,m_t$, respectively, such that $m_1+m_2+\cdots +m_t=n$, does there exist a set of $n−1$ seating arrangements such that each person is seated to the right of every other person precisely once? I will first demonstrate how this problem can be formulated as a type of graph-theoretic problem known as a cycle decomposition problem. Then, I will discuss a particular style of construction that was first introduced by R. HÄggkvist in 1985 to solve several cases of the original Oberwolfach problem. Lastly, I will show how this approach can be adapted to the directed Oberwolfach problem, thereby allowing us to obtain solutions for previously open cases. Results discussed in this talk arose from collaborations with Andrea Burgess, Peter Danziger, and Daniel Horsley.
Lethbridge Number Theory and Combinatorics Seminar
Abstract:
The Riemann zeta function is a fundamental function in number theory. The study of zeros of the zeta function has important applications in studying the distribution of the prime numbers. Riemann hypothesis conjectures that all non-trivial zeros lie on the critical line, while the trivial zeros occur at negative even integers. A less ambitious goal than proving there are no zeros is to determine an upper bound for the number of non-trivial zeros, denoted as $N(\sigma,T)$, within a specific rectangular region defined by $\sigma < \Re{s} < 1$ and $0< \Im{s} < T $. Previous works by various authors like Ingham and Ramare have provided bounds for $N(\sigma,T)$. In 2018, Habiba Kadiri, Allysa Lumley, and Nathan Ng presented a result that provides a better estimate for $N(\sigma,T)$. In this talk, I will give an overview of the method they provide to deduce an upper bound for $N(\sigma,T)$. My thesis will improve their upper bound and also update the result to use better bounds on $\zeta$ on the half line among other improvements.
For a number field $K$, the P\'olya group of $K$, denoted by $Po(K)$, is the subgroup of the ideal class group of $K$ generated by the classes of the products of maximal ideals of $K$ with the same norm. In this talk, after reviewing some results concerning $Po(K)$, I will generalize this notion to the relative P\'olya group $Po(K/F)$, for $K/F$ a finite extension of number fields. Accordingly, I will generalize some results in the literature about P\'olya groups to the relative case. Then, due to some essential observations, I will explain why we need to modify the notion of the relative P\'olya group to the Ostrowski quotient $Ost(K/F)$ to get a more 'accurate' generalization of $Po(K)$. The talk is based on a joint work with Ali Rajaei (Tarbiat Modares University) and Ehsan Shahoseini (Institute For Research In Fundamental Sciences).
We establish the fourth moments of the real and imaginary parts of the Riemann zeta-function, as well as the fourth power mean value of Hardy's Z-function at the Gram points. We also study two weak versions of Gram's law. We show that those weak Gram's laws hold a positive proportion of time. This is joint work with Richard Hall.
In 1973, assuming the Riemann hypothesis (RH), Montgomery studied the vertical distribution of zeta zeros, and conjectured that they behave like the eigenvalues of some random matrices. We will discuss some models for zeta zeros starting from the random matrix model but going beyond it and related questions, conjectures and results on statistical information on the zeros. In particular, assuming RH and a conjecture of Chan for how often gaps between zeros can be close to a fixed non-zero value, we will discuss our proof of a conjecture of Berry (1988) for the number variance of zeta zeros, in a regime where random matrix models alone do not accurately predict the actual behavior (based on joint work with Meghann Moriah Lugar and Micah B. Milinovich).
Let E be an elliptic curve defined over ℚ. Let p > 3 be a prime such that p - 1 is not divisible by 3, 4, 5, 7, 11. In this article, we classify the groups that can arise as E(ℚ(ζp))tors up to isomorphism. The method illustrates techniques for eliminating possible structures that can appear as a subgroup of E(ℚab)tors.
Subconvexity problems have maintained extreme interest in analytic number theory for decades. Critical barriers such as the convexity, Burgess, and Weyl bounds hold particular interest because one usually needs to drastically adjust the analytic techniques involved in order to break through them. It has recently come to light that shifted Dirichlet series can be used to obtain subconvexity results. While these Dirichlet series do not admit Euler products, they are amenable to study via spectral methods. In this talk, we construct a shifted multiple Dirichlet series (MDS) and leverage its analytic continuation via spectral decompositions to obtain the Weyl bound in the conductor-aspect for the L-function of a holomorphic cusp form twisted by an arbitrary Dirichlet character. This improves upon the corresponding bound for quadratic characters obtained by Iwaniec-Conrey in 2000. This work is joint with Jeff Hoffstein, Nikos Diamantis, and Min Lee.
Given two elliptic curves, the path finding problem asks to find an isogeny (i.e. a group homomorphism) between them, subject to certain degree restrictions. Path finding has uses in number theory as well as applications to cryptography. For supersingular curves, this problem is known to be easy when one small endomorphism or the entire endomorphism ring are known. Unfortunately, computing the endomorphism ring, or even just finding one small endomorphism, is hard. How difficult is path finding in the presence of one (not necessarily small) endomorphism? We use the volcano structure of the oriented supersingular isogeny graph to answer this question. We give a classical algorithm for path finding that is subexponential in the degree of the endomorphism and linear in a certain class number, and a quantum algorithm for finding a smooth isogeny (and hence also a path) that is subexponential in the discriminant of the endomorphism. A crucial tool for navigating supersingular oriented isogeny volcanoes is a certain class group action on oriented elliptic curves which generalizes the well-known class group action in the setting of ordinary elliptic curves.