Explicit estimates for the Mertens function
Speaker: Nicol Leong
Date: Tue, Jun 18, 2024
Location: PIMS, University of British Columbia
Conference: Comparative Prime Number Theory
Subject: Mathematics, Number Theory
Class: Scientific
CRG: L-Functions in Analytic Number Theory
Date: Tue, Jun 18, 2024
Location: PIMS, University of British Columbia
Conference: Comparative Prime Number Theory
Subject: Mathematics, Number Theory
Class: Scientific
CRG: L-Functions in Analytic Number Theory
Abstract:
We prove explicit estimates of $1/\zeta(s)$ of various orders, and use an improved version of the Perron formula to get explicit estimates for the Mertens function $M(x)$ of order $O(x)$, $O(x/\log^k x)$, and $O(x\log x exp(−\sqrt{\log{x}})$. These estimates are good for small, medium, and large ranges of $x$, respectively.
Additional Files: