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Mertens function

Definition

The Möbius function is defined for all positive integers n as

µ(n) =


+1 if n square-free and has even number of prime factors

−1 if n square-free and has odd number of prime factors

0 if n contains a square.

Definition

The Mertens function is defined for all positive integers x as

M(x) =
∑
n≤x

µ(n),

where µ(n) is the Möbius function.
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Motivation

For a given x , it is natural to expect M(x) does not grow too large
due to cancellation

|M(x)| ≤ x1/2 for all x > 1 is false (Mertens conjecture)

Riemann Hypothesis is equivalent to M(x) = O
(
x1/2+ϵ

)
, for any

ϵ < 1/2

The true rate of growth of M(x) is still not known

To better understand M(x), we seek explicit bounds on it.
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Some current results

Helfgott and Thompson (2023) verified computationally:

|M(x)| < 0.571
√
x 33 ≤ x ≤ 1023

Cohen, Dress, El Marraki (2007) proved:

|M(x)| < x

4345
x ≥ 2160535. (1)

Ramaré (2013) proved:

|M(x)| < 0.013x

log x
− 0.118x

(log x)2
x ≥ 1078853.

El Marraki (1995) proved explicit bounds of form:

|M(x)| < C0x

(log x)k
, (any k ≥ 0). (2)

Chalker (2019) proved explicit bounds of form:

|M(x)| < C1x log x exp
(
−C2

√
log x

)
, (3)

|M(x)| < C1x exp
(
−C3

√
log x

)
. (4)

Nicol Leong(joint with Ethan Lee) (UNSW Canberra)Explicit bounds for Möbius sums and 1/|ζ(s)| 4 / 1729



Our results

We prove, the first explicit version of Walfisz (1963):

M(x) = O
(
x exp(−C (log x)3/5(log log x)−1/5)

)
,

which is the strongest unconditional bound for M(x) known.

Our method uses a Perron formula argument and bounds for 1/ζ(s):

M(x) =
1

2πi

∫ c+i∞

c−i∞

x s

sζ(s)
ds (c > 1).
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Bounds for 1/ζ(s)

Classically, there are three types of zero-free regions. Let c1, c2, c3 be
constants. We have that ζ(σ + it) ̸= 0 in the region

σ ≥ 1− 1

c1 log t
(de la Vallée Poussin),

σ ≥ 1− log log t

c2 log t
(Littlewood),

σ ≥ 1− 1

c3(log t)2/3(log log t)1/3
(Vinogradov and Korobov).

In these we regions we can obtain respectively:

1

ζ(s)
≪ log t,

1

ζ(s)
≪ log t

log log t
,

1

ζ(s)
≪ (log t)2/3(log log t)1/3.

We make the improvements:

1

ζ(s)
≪ (log t)11/12 and

1

ζ(s)
≪ (log t)2/3(log log t)1/4.
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Sketch proof for the case (log t)

First obtain a uniform bound when 1− δ ≤ σ ≤ 1 + δ1:∣∣∣∣ℜζ ′

ζ
(s)

∣∣∣∣ ≤ C log t.

This can be easily done using function theoretic lemmas or an explicit
formula relating to a sum over zeros.
Apply to the identity

log

∣∣∣∣ 1

ζ(σ + it)

∣∣∣∣ = −ℜ log ζ(1 + δ1 + it) +

∫ 1+δ1

σ
ℜζ ′

ζ
(x + it)dx .
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Sketch proof for the case (log t)

For 1− δ ≤ σ ≤ 1 + δ1, we arrive at∣∣∣∣ 1

ζ(σ + it)

∣∣∣∣ ≤ ∣∣∣∣ 1

ζ(1 + δ1 + it)

∣∣∣∣ exp
(
(δ1 + δ)C log t

)

=

∣∣∣∣ 1

ζ(1 + δ1 + it)

∣∣∣∣ exp(C1), (5)

by choosing δ, δ1 = O(1/ log t).

The order of the left-hand side of (5) is equivalent to the order of∣∣∣∣ 1

ζ(1 + δ1 + it)

∣∣∣∣ .
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Estimating 1/ζ(s) when σ > 1

Typically, a trivial bound for σ > 1 would give∣∣∣∣ 1

ζ(1 + δ1 + it)

∣∣∣∣ ≤ ζ(1 + δ1) = O

(
1

δ1

)
= O(log t) (6)

(recall we chose δ1 = O(1/ log t)).

On the other hand, the classical non-negative trigonometric polynomial

3 + 4 cos θ + cos 2θ ≥ 0 =⇒ ζ3(σ)|ζ4(σ + it)ζ(σ + 2it)| ≥ 1.

i.e.,

∣∣∣∣ 1

ζ(1 + δ1 + it)

∣∣∣∣ ≤ |ζ(1 + δ1)|3/4|ζ(1 + δ1 + 2it)|1/4

≤ C2(log t)
3/4|ζ(1 + δ1 + 2it)|1/4

by (6). Note that applying (6) again would give an overall O(log t) bound.
Our goal is to improve this.
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Estimating 1/ζ(s) when σ > 1

So far, we have for 1− δ ≤ σ ≤ 1 + δ1 ≤ 2,∣∣∣∣ 1

ζ(σ + it)

∣∣∣∣ ≤ C3

∣∣∣∣ 1

ζ(1 + δ1 + it)

∣∣∣∣≪ (log t)3/4|ζ(1 + δ1 + 2it)|1/4. (7)

Instead of using trivial bounds, we use the Phragmén–Lindelöf principle to
combine the bounds

ζ(1 + it) ≪ (log t)2/3 and |ζ(2 + it)| ≤ ζ(2) ≪ 1

so that ζ(s) ≪ (log t)2/3 for 1 ≤ σ ≤ 2.
Finally, apply to (7):∣∣∣∣ 1

ζ(s)

∣∣∣∣≪ (log t)3/4((log t)2/3)1/4 = (log t)11/12.
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