Explicit bounds for Möbius sums and $1 /|\zeta(s)|$

Nicol Leong
(joint with Ethan Lee)

UNSW Canberra

Mertens function

Definition

The Möbius function is defined for all positive integers n as
$\mu(n)=\left\{\begin{array}{ccc}+1 & \text { if } n \text { square-free and has even number of prime factors } \\ -1 & \text { if } & n \text { square-free and has odd number of prime factors } \\ 0 & \text { if } & n \text { contains a square. }\end{array}\right.$

Mertens function

Definition

The Möbius function is defined for all positive integers n as

$$
\mu(n)=\left\{\begin{array}{cll}
+1 & \text { if } & n \text { square-free and has even number of prime factors } \\
-1 & \text { if } & n \text { square-free and has odd number of prime factors } \\
0 & \text { if } & n \text { contains a square. }
\end{array}\right.
$$

Definition

The Mertens function is defined for all positive integers x as

$$
M(x)=\sum_{n \leq x} \mu(n)
$$

where $\mu(n)$ is the Möbius function.

Motivation

- For a given x, it is natural to expect $M(x)$ does not grow too large due to cancellation

Motivation

- For a given x, it is natural to expect $M(x)$ does not grow too large due to cancellation
- $|M(x)| \leq x^{1 / 2}$ for all $x>1$ is false (Mertens conjecture)

Motivation

- For a given x, it is natural to expect $M(x)$ does not grow too large due to cancellation
- $|M(x)| \leq x^{1 / 2}$ for all $x>1$ is false (Mertens conjecture)
- Riemann Hypothesis is equivalent to $M(x)=O\left(x^{1 / 2+\epsilon}\right)$, for any $\epsilon<1 / 2$

Motivation

- For a given x, it is natural to expect $M(x)$ does not grow too large due to cancellation
- $|M(x)| \leq x^{1 / 2}$ for all $x>1$ is false (Mertens conjecture)
- Riemann Hypothesis is equivalent to $M(x)=O\left(x^{1 / 2+\epsilon}\right)$, for any $\epsilon<1 / 2$
- The true rate of growth of $M(x)$ is still not known

Motivation

- For a given x, it is natural to expect $M(x)$ does not grow too large due to cancellation
- $|M(x)| \leq x^{1 / 2}$ for all $x>1$ is false (Mertens conjecture)
- Riemann Hypothesis is equivalent to $M(x)=O\left(x^{1 / 2+\epsilon}\right)$, for any $\epsilon<1 / 2$
- The true rate of growth of $M(x)$ is still not known

To better understand $M(x)$, we seek explicit bounds on it.

Some current results

- Helfgott and Thompson (2023) verified computationally:

$$
|M(x)|<0.571 \sqrt{x} \quad 33 \leq x \leq 10^{23}
$$

- Cohen, Dress, El Marraki (2007) proved:

$$
\begin{equation*}
|M(x)|<\frac{x}{4345} \quad x \geq 2160535 \tag{1}
\end{equation*}
$$

- Ramaré (2013) proved:

$$
|M(x)|<\frac{0.013 x}{\log x}-\frac{0.118 x}{(\log x)^{2}} \quad x \geq 1078853
$$

- El Marraki (1995) proved explicit bounds of form:

$$
\begin{equation*}
|M(x)|<\frac{C_{0} x}{(\log x)^{k}}, \quad(\text { any } k \geq 0) \tag{2}
\end{equation*}
$$

- Chalker (2019) proved explicit bounds of form:

$$
\begin{align*}
& |M(x)|<C_{1} x \log x \exp \left(-C_{2} \sqrt{\log x}\right) \tag{3}\\
& |M(x)|<C_{1} x \exp \left(-C_{3} \sqrt{\log x}\right) \tag{4}
\end{align*}
$$

Our results

We prove, the first explicit version of Walfisz (1963):

$$
M(x)=O\left(x \exp \left(-C(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right)
$$

which is the strongest unconditional bound for $M(x)$ known.

Our results

We prove, the first explicit version of Walfisz (1963):

$$
M(x)=O\left(x \exp \left(-C(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right)
$$

which is the strongest unconditional bound for $M(x)$ known.
Our method uses a Perron formula argument and bounds for $1 / \zeta(s)$:

$$
M(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s}}{s \zeta(s)} d s \quad(c>1)
$$

Bounds for $1 / \zeta(s)$

Classically, there are three types of zero-free regions. Let c_{1}, c_{2}, c_{3} be constants. We have that $\zeta(\sigma+i t) \neq 0$ in the region

$$
\begin{gathered}
\sigma \geq 1-\frac{1}{c_{1} \log t} \quad \text { (de la Vallée Poussin), } \\
\sigma \geq 1-\frac{\log \log t}{c_{2} \log t} \quad \text { (Littlewood), } \\
\sigma \geq 1-\frac{1}{c_{3}(\log t)^{2 / 3}(\log \log t)^{1 / 3}} \quad \text { (Vinogradov and Korobov). }
\end{gathered}
$$

Bounds for $1 / \zeta(s)$

Classically, there are three types of zero-free regions. Let c_{1}, c_{2}, c_{3} be constants. We have that $\zeta(\sigma+i t) \neq 0$ in the region

$$
\begin{gathered}
\sigma \geq 1-\frac{1}{c_{1} \log t} \quad(\text { de la Vallée Poussin) } \\
\sigma \geq 1-\frac{\log \log t}{c_{2} \log t} \quad(\text { Littlewood }) \\
\sigma \geq 1-\frac{1}{c_{3}(\log t)^{2 / 3}(\log \log t)^{1 / 3}} \quad \text { (Vinogradov and Korobov). }
\end{gathered}
$$

In these we regions we can obtain respectively:

$$
\frac{1}{\zeta(s)} \ll \log t, \quad \frac{1}{\zeta(s)} \ll \frac{\log t}{\log \log t}, \quad \frac{1}{\zeta(s)} \ll(\log t)^{2 / 3}(\log \log t)^{1 / 3} .
$$

Bounds for $1 / \zeta(s)$

Classically, there are three types of zero-free regions. Let c_{1}, c_{2}, c_{3} be constants. We have that $\zeta(\sigma+i t) \neq 0$ in the region

$$
\begin{gathered}
\sigma \geq 1-\frac{1}{c_{1} \log t} \quad(\text { de la Vallée Poussin) } \\
\sigma \geq 1-\frac{\log \log t}{c_{2} \log t} \quad(\text { Littlewood }) \\
\sigma \geq 1-\frac{1}{c_{3}(\log t)^{2 / 3}(\log \log t)^{1 / 3}} \quad \text { (Vinogradov and Korobov). }
\end{gathered}
$$

In these we regions we can obtain respectively:

$$
\frac{1}{\zeta(s)} \ll \log t, \quad \frac{1}{\zeta(s)} \ll \frac{\log t}{\log \log t}, \quad \frac{1}{\zeta(s)} \ll(\log t)^{2 / 3}(\log \log t)^{1 / 3} .
$$

We make the improvements:

$$
\frac{1}{\zeta(s)} \ll(\log t)^{11 / 12} \quad \text { and } \quad \frac{1}{\zeta(s)} \ll(\log t)^{2 / 3}(\log \log t)^{1 / 4}
$$

Sketch proof for the case $(\log t)$

First obtain a uniform bound when $1-\delta \leq \sigma \leq 1+\delta_{1}$:

$$
\left|\Re \frac{\zeta^{\prime}}{\zeta}(s)\right| \leq C \log t
$$

Sketch proof for the case $(\log t)$

First obtain a uniform bound when $1-\delta \leq \sigma \leq 1+\delta_{1}$:

$$
\left|\Re \frac{\zeta^{\prime}}{\zeta}(s)\right| \leq C \log t
$$

This can be easily done using function theoretic lemmas or an explicit formula relating to a sum over zeros.

Sketch proof for the case $(\log t)$

First obtain a uniform bound when $1-\delta \leq \sigma \leq 1+\delta_{1}$:

$$
\left|\Re \frac{\zeta^{\prime}}{\zeta}(s)\right| \leq C \log t
$$

This can be easily done using function theoretic lemmas or an explicit formula relating to a sum over zeros.

Apply to the identity

$$
\log \left|\frac{1}{\zeta(\sigma+i t)}\right|=-\Re \log \zeta\left(1+\delta_{1}+i t\right)+\int_{\sigma}^{1+\delta_{1}} \Re \frac{\zeta^{\prime}}{\zeta}(x+i t) d x .
$$

Sketch proof for the case $(\log t)$

For $1-\delta \leq \sigma \leq 1+\delta_{1}$, we arrive at

$$
\begin{align*}
\left|\frac{1}{\zeta(\sigma+i t)}\right| & \leq\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \exp \left(\left(\delta_{1}+\delta\right) C \log t\right) \\
& =\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \exp \left(C_{1}\right), \tag{5}
\end{align*}
$$

by choosing $\delta, \delta_{1}=O(1 / \log t)$.

The order of the left-hand side of (5) is equivalent to the order of

$$
\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right|
$$

Sketch proof for the case $(\log t)$

For $1-\delta \leq \sigma \leq 1+\delta_{1}$, we arrive at

$$
\begin{align*}
\left|\frac{1}{\zeta(\sigma+i t)}\right| & \leq\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \exp \left(\left(\delta_{1}+\delta\right) C \log t\right) \\
& =\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \exp \left(C_{1}\right), \tag{5}
\end{align*}
$$

by choosing $\delta, \delta_{1}=O(1 / \log t)$.

Sketch proof for the case $(\log t)$

For $1-\delta \leq \sigma \leq 1+\delta_{1}$, we arrive at

$$
\begin{align*}
\left|\frac{1}{\zeta(\sigma+i t)}\right| & \leq\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \exp \left(\left(\delta_{1}+\delta\right) C \log t\right) \\
& =\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \exp \left(C_{1}\right), \tag{5}
\end{align*}
$$

by choosing $\delta, \delta_{1}=O(1 / \log t)$.

The order of the left-hand side of (5) is equivalent to the order of

$$
\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right|
$$

Estimating $1 / \zeta(s)$ when $\sigma>1$

Typically, a trivial bound for $\sigma>1$ would give

$$
\begin{equation*}
\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \leq \zeta\left(1+\delta_{1}\right)=O\left(\frac{1}{\delta_{1}}\right)=O(\log t) \tag{6}
\end{equation*}
$$

(recall we chose $\delta_{1}=O(1 / \log t)$).

Estimating $1 / \zeta(s)$ when $\sigma>1$

Typically, a trivial bound for $\sigma>1$ would give

$$
\begin{equation*}
\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \leq \zeta\left(1+\delta_{1}\right)=O\left(\frac{1}{\delta_{1}}\right)=O(\log t) \tag{6}
\end{equation*}
$$

(recall we chose $\delta_{1}=O(1 / \log t)$).
On the other hand, the classical non-negative trigonometric polynomial

$$
3+4 \cos \theta+\cos 2 \theta \geq 0 \Longrightarrow \zeta^{3}(\sigma)\left|\zeta^{4}(\sigma+i t) \zeta(\sigma+2 i t)\right| \geq 1
$$

Estimating $1 / \zeta(s)$ when $\sigma>1$

Typically, a trivial bound for $\sigma>1$ would give

$$
\begin{equation*}
\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \leq \zeta\left(1+\delta_{1}\right)=O\left(\frac{1}{\delta_{1}}\right)=O(\log t) \tag{6}
\end{equation*}
$$

(recall we chose $\delta_{1}=O(1 / \log t)$).
On the other hand, the classical non-negative trigonometric polynomial

$$
\begin{aligned}
3+4 \cos \theta+\cos 2 \theta \geq 0 & \Longrightarrow \zeta^{3}(\sigma)\left|\zeta^{4}(\sigma+i t) \zeta(\sigma+2 i t)\right| \geq 1 \\
\text { i.e., } \quad\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| & \leq\left|\zeta\left(1+\delta_{1}\right)\right|^{3 / 4}\left|\zeta\left(1+\delta_{1}+2 i t\right)\right|^{1 / 4} \\
& \leq C_{2}(\log t)^{3 / 4}\left|\zeta\left(1+\delta_{1}+2 i t\right)\right|^{1 / 4}
\end{aligned}
$$

by (6).

Estimating $1 / \zeta(s)$ when $\sigma>1$

Typically, a trivial bound for $\sigma>1$ would give

$$
\begin{equation*}
\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \leq \zeta\left(1+\delta_{1}\right)=O\left(\frac{1}{\delta_{1}}\right)=O(\log t) \tag{6}
\end{equation*}
$$

(recall we chose $\delta_{1}=O(1 / \log t)$).
On the other hand, the classical non-negative trigonometric polynomial

$$
\begin{aligned}
3+4 \cos \theta+\cos 2 \theta \geq 0 & \Longrightarrow \zeta^{3}(\sigma)\left|\zeta^{4}(\sigma+i t) \zeta(\sigma+2 i t)\right| \geq 1 \\
\text { i.e., } \quad\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| & \leq\left|\zeta\left(1+\delta_{1}\right)\right|^{3 / 4}\left|\zeta\left(1+\delta_{1}+2 i t\right)\right|^{1 / 4} \\
& \leq C_{2}(\log t)^{3 / 4}\left|\zeta\left(1+\delta_{1}+2 i t\right)\right|^{1 / 4}
\end{aligned}
$$

by (6). Note that applying (6) again would give an overall $O(\log t)$ bound. Our goal is to improve this.

Estimating $1 / \zeta(s)$ when $\sigma>1$

So far, we have for $1-\delta \leq \sigma \leq 1+\delta_{1} \leq 2$,

$$
\begin{equation*}
\left|\frac{1}{\zeta(\sigma+i t)}\right| \leq C_{3}\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \ll(\log t)^{3 / 4}\left|\zeta\left(1+\delta_{1}+2 i t\right)\right|^{1 / 4} \tag{7}
\end{equation*}
$$

Estimating $1 / \zeta(s)$ when $\sigma>1$

So far, we have for $1-\delta \leq \sigma \leq 1+\delta_{1} \leq 2$,

$$
\begin{equation*}
\left|\frac{1}{\zeta(\sigma+i t)}\right| \leq C_{3}\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \ll(\log t)^{3 / 4}\left|\zeta\left(1+\delta_{1}+2 i t\right)\right|^{1 / 4} . \tag{7}
\end{equation*}
$$

Instead of using trivial bounds, we use the Phragmén-Lindelöf principle to combine the bounds

$$
\zeta(1+i t) \ll(\log t)^{2 / 3} \quad \text { and } \quad|\zeta(2+i t)| \leq \zeta(2) \ll 1
$$

Estimating $1 / \zeta(s)$ when $\sigma>1$

So far, we have for $1-\delta \leq \sigma \leq 1+\delta_{1} \leq 2$,

$$
\begin{equation*}
\left|\frac{1}{\zeta(\sigma+i t)}\right| \leq C_{3}\left|\frac{1}{\zeta\left(1+\delta_{1}+i t\right)}\right| \ll(\log t)^{3 / 4}\left|\zeta\left(1+\delta_{1}+2 i t\right)\right|^{1 / 4} \tag{7}
\end{equation*}
$$

Instead of using trivial bounds, we use the Phragmén-Lindelöf principle to combine the bounds

$$
\zeta(1+i t) \ll(\log t)^{2 / 3} \quad \text { and } \quad|\zeta(2+i t)| \leq \zeta(2) \ll 1
$$

so that $\zeta(s) \ll(\log t)^{2 / 3}$ for $1 \leq \sigma \leq 2$.
Finally, apply to (7):

$$
\left|\frac{1}{\zeta(s)}\right| \ll(\log t)^{3 / 4}\left((\log t)^{2 / 3}\right)^{1 / 4}=(\log t)^{11 / 12}
$$

