# The Shanks–Rényi prime number race problem

Date: Mon, Jun 17, 2024

Location: PIMS, University of British Columbia

Conference: Comparative Prime Number Theory

Subject: Mathematics, Number Theory

Class: Scientific

CRG: L-Functions in Analytic Number Theory

### Abstract:

Let $\pi(x; q, a)$ be the number of primes $p\leq x$ such that $p \equiv a (\mod q)$. The classical Shanks–Rényi prime number race problem asks, given positive integers $q \geq 3$ and $2 \leq r \leq \phi(q)$ and distinct reduced residue classes $a_1, a_2, . . . , a_r$ modulo $q$, whether there are infinitely many integers $n$ such that $\pi (n; q, a1) > \pi(n; q, a2) > \cdots > \pi(n; q, ar)$. In this talk, I will describe what is known on this problem when the number of competitors $r \geq 3$, and how this compares to the Chebyshev’s bias case which corresponds to $r = 2$.