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Chebyshev’s observation

In 1853, Chebyshev wrote a letter to Fuss with the following statement

There is a notable difference in the splitting of the primes between the two
forms 4n + 3, 4n + 1: the first form contains a lot more than the second.

Table: The number of primes of the form 4n + 3 and 4n + 1 up to x (from A.
Granville and G. Martin, “prime number races”, Amer. Math. Monthly 113
(2006), no. 1, 1–33.)

x π(x ; 4, 3) π(x ; 4, 1)

100 13 11

500 50 44

1000 87 80

5000 339 329

10,000 619 609

50,000 2583 2549

100,000 4808 4783
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π(x ; 4, 1) > π(x ; 4, 3) for the first time when x = 26,861.

For x ≥ 26,863, π(x ; 4, 1) > π(x ; 4, 3) occurs for the first time when
x = 616,841, and also at various numbers until 633,798.

The first x > 633,798 for which π(x ; 4, 1) > π(x ; 4, 3) is x =
12,306,137.

Theorem (Littlewood 1914)

The difference π(x ; 4, 1)− π(x ; 4, 3) changes sign for infinitely many
integers x .
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The race modulo 3

Table: The number of primes of the form 3n + 2 and 3n + 1 up to x

x π(x ; 3, 2) π(x ; 3, 1)

100 13 11

1000 87 80

10,000 617 611

100,000 4807 4784

1,000,000 39,266 39,231

Theorem (Littlewood 1914)

π(x ; 3, 1)− π(x ; 3, 2) changes sign for infinitely many integers x .

Bays and Hudson (Christmas Day of 1976): π(x ; 3, 1) > π(x ; 3, 2) for the
first time when x = 608,981,813,029 ≈ 6× 1011.
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The Shanks–Rényi prime number race problem

Let q ≥ 3 and 2 ≤ r ≤ φ(q) be positive integers.

Let a1, a2, . . . , ar be distinct residue classes modulo q which are
coprime to q.

We consider a game with r players called “1” through “r”, where at
time x , the player “j” has a score of π(x ; q, aj).

1. Will each of the players take the lead for infinitely many integers x?

2. Will all r ! orderings of the players occur for infinitely many integers x?

3. What is the “probability” that a particular ordering
π(x ; q, a1) > π(x ; q, a2) > · · · > π(x ; q, ar ) occurs?
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The two-way race

Haselgrove’s condition for the modulus q

For all characters χ modulo q we have L(s, χ) ̸= 0 for all s ∈ (0, 1).

Theorem (Knapowski and Turán, 1962)

Assume Haselgrove’s condition for the modulus q. For any (a, q) = 1 such
that a ̸≡ 1 (mod q), the quantity π(x ; q, a)− π(x ; q, 1) changes sign for
infinitely many integers x .

Rumely (1993) : Haselgrove’s condition is true for all q ≤ 72.

Sneed (2009) : Haselgrove’s condition is true for all q ≤ 100.
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Theorem (Kátai, 1964)

Assume Haselgrove’s condition for the modulus q. If a ̸≡ b (mod q) are
both squares, or both non-squares modulo q, then π(x ; q, a)− π(x ; q, b)
changes sign for infinitely many integers x .

Theorem (Sneed, 2009)

For all q ≤ 100 and all (ab, q) = 1, π(x ; q, a)− π(x ; q, b) changes sign for
infinitely many integers x .
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Races with 3 or more competitors

Theorem (Kaczorowski, 1993)

Assume GRH. Let q ≥ 3. There exist infinitely many integers x such that

π(x ; q, 1) > max
a ̸≡1 mod q

π(x ; q, a).

The same is true for π(x ; q, 1) < mina ̸≡1 mod q π(x ; q, a).

Theorem (Kaczorowski, 1996)

Assume GRH. For each q ≥ 5, q ̸= 6 one can construct an explicit
φ(q)-race such that π(x ; q, 1) > π(x ; q, b2) · · · > π(x ; q, bφ(q)) holds
for infinitely many integers x . The same is true for a certain ordering
π(x ; q, 1) < π(x ; q, a2) · · · < π(x ; q, aφ(q)).

For example
π(x ; 7, 1) > π(x ; 7, 5) > π(x ; 7, 6) > π(x ; 7, 3) > π(x ; 7, 4) > π(x ; 7, 2)
holds for infinitely many integers x .
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Barriers : The work of Ford and Konyagin

Theorem (Ford and Konyagin, 2002)

Let q ≥ 5 and a1, a2, a3 be distinct residue classes mod q that are coprime
to q. Let τ be arbitrarily large.

There exists a finite set
B = {σ + it : 1/2 < σ ≤ 1 and t ≥ τ} (called a barrier), such that if
certain L-functions L(s, χ) with χ mod q have zeros (with certain
multiplicities) in B then one of the 6 orderings of the functions
π(x ; q, a1), π(x ; q, a2), π(x ; q, a3) does not hold for large x .

Theorem (Ford and Konyagin, 2003)

Fix q ≥ 5 and an arbitrarily large τ . Let 4 ≤ r ≤ φ(q) and a1, . . . , ar be
distinct residue classes mod q that are coprime to q. There exists a finite
set B = {σ + it : 1/2 < σ ≤ 1 and t ≥ τ}, such that if certain L-functions
L(s, χ) with χ mod q have zeros (with certain multiplicities) in B then at
most r(r − 1) of the r ! orderings of the functions
π(x ; q, a1), π(x ; q, a2), . . . , π(x ; q, ar ) occur for large x .
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Densities in the prime number race problem

Conjecture (Knapowski-Turàn 1962)

As X → ∞, the percentage of integers x ≤ X for which
π(x ; 4, 1) > π(x ; 4, 3) goes to to 0%.

The following table gives, for X in various ranges, the maximum
percentage of values of x ≤ X for which π(x ; 4, 1) > π(x ; 4, 3):

Table:

For X in the range Maximum percentage of such x ≤ X

0− 107 2.6%

107 − 108 0.6%

107 − 108 0.6%

108 − 109 0.1%

109 − 1010 1.6%

1010 − 1011 2.8%
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Theorem (Kaczorowski 1993)

If the Generalized Riemann Hypothesis GRH is true, then the
Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set B = {σ + it : 0 ≤ σ ≤ 1 and σ ̸= 1/2} such that if
L(s, χ1) has zeros (with certain multiplicities) in B (where χ1 is the
non-principal character modulo 4), then the Knapowski-Turàn Conjecture
is true!

The hypothetical zeros of L(s, χ1) can be chosen with arbitrarily large
imaginary parts.

They can be arbitrarily close to the critical line Re(s) = 1/2.

B is a very “thin” set. Indeed, our construction involves
O
(
(logT )5/4

)
zeros (counted with multiplicity) with imaginary part

less than T .
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is true!

The hypothetical zeros of L(s, χ1) can be chosen with arbitrarily large
imaginary parts.

They can be arbitrarily close to the critical line Re(s) = 1/2.

B is a very “thin” set. Indeed, our construction involves
O
(
(logT )5/4

)
zeros (counted with multiplicity) with imaginary part

less than T .
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Theorem (Kaczorowski 1993)

Assume GRH. For any (a, q) = 1 such that a ̸≡ 1 mod q, the set of
positive integers x for which π(x ; q, 1) > π(x ; q, a) has a positive lower
density.

Theorem (Ford, Konyagin and L. 2013)

Let a, b be distinct reduced residue classes modulo q. We can construct a
set B = {σ + it : 0 ≤ σ ≤ 1 and σ ̸= 1/2} such that if a certain L(s, χ)
has zeros (with certain multiplicities) in B, then the percentage of integers
x ≤ X for which π(x ; q, a) > π(x ; q, b) goes to 0%.
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Chebyshev’s Bias

Chebyshev’s Bias

There seem to be “more” primes of the form qn + a than of the form
qn + b if a is non-square and b is a square modulo q.

Table: The number of primes of the form 10n + j up to x

x Last Digit 1 Last Digit 3 Last Digit 7 Last Digit 9

1000 40 42 46 38

10,000 306 310 308 303

100,000 2387 2402 2411 2390

1,000,000 19,617 19,665 19,621 19,593
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Table: The number of primes of the form 8n + j up to x

x π(x ; 8, 1) π(x ; 8, 3) π(x ; 8, 5) π(x ; 8, 7)

1000 37 44 43 43

10,000 295 311 314 308

100,000 2384 2409 2399 2399

1,000,000 19,552 19,653 19,623 19,669
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Measuring the bias: the work of Rubinstein-Sarnak

Theorem (Kaczorowski 1993)

Assume the Generalized Riemann Hypothesis. The quantity

1

X
|{x ≤ X : π(x ; 4, 3) > π(x ; 4, 1)}

does not tend to any limit as X → ∞.

Rubinstein and Sarnak (1994)

The natural density is not the correct way to measure the bias!

The adequate measure to use is the logarithmic measure.

Need to use the Generalized Riemann Hypothesis and the Linear
Independence Conjecture LI, which is the assumption that the
positive imaginary parts of the zeros of the associated Dirichlet
L-functions are linearly independent over the rational numbers.
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Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. As X → ∞,

1

logX

∑
x≤X

π(x ;4,3)>π(x ;4,1)

1

x
→ 0.9959 . . .

Chebyshev was correct 99.59% of the time!

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Let a, b be distinct reduced residue classes modulo
q. The logarithmic density

δ(q; a, b) := lim
X→∞

1

logX

∫
t∈[2,X ]

π(t;q,a)>π(t;q,b)

dt

t
,

exists and is positive.
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δ(q; a, b) is “the probability” that π(x ; q, a) > π(x ; q, b).

Theorem (Rubinstein-Sarnak, 1994)

Assume GRH and LI.

δ(q; a, b) = 1
2 if a and b are both squares or both non-squares modulo

q.

Chebyshev’s bias: δ(q; a, b) > 1/2 if a is a non-square and b is a
square modulo q.

δ(4; 3, 1) = 0.9959 . . . and δ(3; 2, 1) = 0.9990 . . . .
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Let 2 ≤ r ≤ φ(q) and a1, . . . , ar be distinct residue classes modulo q
which are coprime to q.

Let P(q; a1, . . . , ar ) be the set of positive integer x such that

π(x ; q, a1) > π(a; q, a2) > · · · > π(x ; q, ar ).

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. The logarithmic density of P(q; a1, . . . , ar ) defined by

δ(q; a1, . . . , ar ) := lim
X→∞

1

logX

∫
t∈P(q;a1,...,ar )∩[2,X ]

dt

t
,

exists and is positive.

δ(q; a1, . . . , ar ) is the “probability” that π(x ; q, a1) > · · · > π(x ; q, ar ).
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δ(q; a1, . . . , ar ) is the “probability” that π(x ; q, a1) > · · · > π(x ; q, ar ).

The race {q; a1, . . . , ar} is said to be unbiased if for every
permutation σ of the set {1, 2, . . . , r} we have

δ(q; aσ(1), . . . , aσ(r)) = δ(q; a1, . . . , ar ) =
1

r !
.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

A two-way prime number race {q; a1, a2} is unbiased if and only if
a1, a2 are both squares or both non-squares modulo q.

If r = 3 and a1, a2, a3 verify a2 ≡ ρa1 mod q and a3 ≡ ρa2 mod q
where ρ3 ≡ 1 mod q, then the race {q; a1, a2, a3} is unbiased.

If a race {q; a1, . . . , ar} is unbiased, then all the ai must be either squares
or either non-squares modulo q.

Guess: If a1, . . . , ar are all squares or all non-squares modulo q, then
the race {q; a1, . . . , ar} is unbiased.
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Feuerverger and Martin (2000): Our guess is wrong!

Theorem (Feuerverger and Martin, 2000)

Assume GRH and LI. The races {8; 3, 5, 7} and {12; 5, 7, 11} are biased.

All the densities δ(q; a1, . . . , ar ) they computed are such that r ≤ 4
and q ≤ 12.

It is difficult to compute these densities, since we need to use many
zeros of Dirichlet L-functions!

Theorem (L, 2013)

Assume GRH and LI. Fix r ≥ 3. There exists a constant q0(r) such that if
q ≥ q0(r) then

There exist distinct residue classes a1, . . . , ar mod q, with (ai , q) = 1,
a1, . . . , ar are squares modulo q and the race {q; a1, . . . , ar} is biased.

There exist distinct residue classes b1, . . . , br mod q, with (bi , q) = 1,
b1, . . . , br are non-squares mod q and the race {q; b1, . . . , br} is
biased.
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The size of δ(q; a1, . . . , ar) when r is fixed and q is large

δ(4; 3, 1) = 0.9959 . . . (Rubinstein-Sarnak, 1994)

δ(420; 17, 1) = 0.7956 . . . (Fiorilli-Martin, 2009)

δ(997; 11, 1) = 0.5082 . . . (Fiorilli-Martin, 2009)

The bias towards non-squares becomes “less pronounced” when q grows.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. We have

max
a1,a2 mod q

∣∣∣∣δ(q; a1, a2)− 1

2

∣∣∣∣→ 0 as q → ∞.

More generally if r ≥ 2 is fixed, then

max
a1,a2,...,ar mod q

∣∣∣∣δ(q; a1, . . . , ar )− 1

r !

∣∣∣∣→ 0 as q → ∞.
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Let

∆r (q) := max
a1,a2,...,ar mod q

∣∣∣∣δ(q; a1, . . . , ar )− 1

r !

∣∣∣∣ .

Theorem (Fiorilli and Martin, 2009)

Assume GRH and LI. We have

∆2(q) ∼
ρ(q)

2
√
πφ(q) log q

=
1

q1/2+o(1)
,

where ρ(q) is the number of solutions of t2 ≡ 1 mod q, and o(1) is a
quantity which goes to 0 as q → ∞.

Theorem (L, 2013)

Assume GRH and LI. Let r ≥ 3 be a fixed integer. There exist positive
constants c1(r), c2(r) and a positive integer q0 such that, if q ≥ q0 then

c1(r)

log q
≤ ∆r (q) ≤

c2(r)

log q
.
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Youness Lamzouri (U de Lorraine) The Shanks–Rényi prime number race problem June 17th, 2024 22 / 32



The random verctor associated to a prime number race

For a non-principal Dirichlet character χ ̸= χ0, let {1/2 + iγχ} be the
sequence of non-trivial zeros of the Dirichlet L-function L(s, χ), and
let Sq = ∪χ ̸=χ0 mod q{γχ : γχ > 0}.

Let {U(γχ)}γχ∈Sq be a sequence of independent random variables
uniformly distributed on the unit circle U = {z ∈ C : |z | = 1}.
We consider the random variables

X (q, a) = −cq(a) +
∑
χ ̸=χ0

χ mod q

∑
γχ>0

2Re(χ(a)U(γχ))√
1
4 + γ2χ

,

where

cq(a) := −1 + |{b mod q : b2 ≡ a mod q}| = qo(1).
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Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Then we have

δ(q; a1, . . . , ar ) = P
(
X (q, a1) > X (q, a2) > · · · > X (q, ar )

)
.

The mean vector of
(
X (q, a1),X (q, a2), . . . , > X (q, ar )

)
equals

(−cq(a1), . . . ,−cq(ar )) and is responsible for Chebyshev’s Bias (if
r = 2).

The covariance matrix of
(
X (q, a1),X (q, a2), . . . , > X (q, ar )

)
,

noted Covq;a1,...,ar (j , k) satisfies

Covq;a1,...,ar (j , k)

{
∼ φ(q) log q if j = k

= O(φ(q)) if j ̸= k.

The random variables X (q, a) are weakly correlated, and their
correlations govern the behavior of ∆r (q) for r ≥ 3.
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Youness Lamzouri (U de Lorraine) The Shanks–Rényi prime number race problem June 17th, 2024 24 / 32



Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Then we have

δ(q; a1, . . . , ar ) = P
(
X (q, a1) > X (q, a2) > · · · > X (q, ar )

)
.

The mean vector of
(
X (q, a1),X (q, a2), . . . , > X (q, ar )

)
equals

(−cq(a1), . . . ,−cq(ar )) and is responsible for Chebyshev’s Bias (if
r = 2).

The covariance matrix of
(
X (q, a1),X (q, a2), . . . , > X (q, ar )

)
,

noted Covq;a1,...,ar (j , k) satisfies

Covq;a1,...,ar (j , k)

{
∼ φ(q) log q if j = k

= O(φ(q)) if j ̸= k.

The random variables X (q, a) are weakly correlated, and their
correlations govern the behavior of ∆r (q) for r ≥ 3.
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The size of δ(q; a1, . . . , ar) when r → ∞ as q → ∞

Conjecture (Feuerverger-Martin, 2000)

There exist a function r0(q) with r0(q) → ∞ as q → ∞, such that for any
integer r ≤ r0(q) we have

lim
q→∞

max
a1,...,ar mod q

|r !δ(q; a1, . . . , ar )− 1| = 0,

Theorem (L, 2012)

The Feuerverger-Martin is true under GRH and LI.

Assume GRH and LI. For any integer r such that 2 ≤ r ≤
√
log q we

have uniformly for all r -tuples (a1, . . . , ar ) of distinct reduced residue
classes modulo q

δ(q; a1, . . . , ar ) =
1

r !

(
1 + O

(
r2

log q

))
.
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A transition in the behavior of the densities δ(q; a1, . . . , ar)

Conjecture (Ford and L., 2011)

1. If 2 ≤ r ≤ (log q)1−ε, then uniformly for all r -tuples (a1, . . . , ar ) of
distinct reduced residue classes modulo q we have

δ(q; a1, . . . , ar ) ∼
1

r !

as q → ∞.

2. If (log q)1+ε ≤ r ≤ φ(q), then there exist r -tuples
(a1, . . . , ar ), (b1, . . . , br ) for which we have as q → ∞

r ! · δ(q; a1, . . . , ar ) → 0

and
r ! · δ(q; b1, . . . , br ) → ∞.
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Theorem (Harper and L., 2018)

Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.

Assume GRH and LI. Let 2 ≤ r ≤ log q/(log log q)4 be a positive
integer. Then, uniformly for all r -tuples (a1, . . . , ar ) of distinct
reduced residue classes modulo q we have

δ(q; a1, . . . , ar ) =
1

r !

(
1 + O

(
r(log r)4

log q

))
.

The main ingredient of the proof is a harmonic analysis estimate related to
the Hardy-Littlewood circle method, and inspired by work of Bourgain.
This is used to control the average size of the correlations of the random
variables X (q, a1), . . . ,X (q, ar ).
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Theorem (Ford, Harper, and L. 2019)

Assume GRH and LI. If log q ≤ r ≤ φ(q), then there exist r -tuples
(a1, . . . , ar ), (b1, . . . , br ) of distinct reduced residues mod q such that

δ(q; a1, . . . , ar ) ≤ exp

(
−min{r , φ(q)1/50}

C log q

)
1

r !
,

and

δ(q; b1, . . . , br ) ≥ exp

(
min{r , φ(q)1/50}

C log q

)
1

r !
,

for some absolute constant C > 0.

This establishes the second part of Ford and Lamzouri’s Conjecture
(under GRH and LI) as soon as r/ log q → ∞.
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Ingredients of the proof

We extract these extreme biases from auxiliary prime races.

Let 1 ≤ k ≤ r/2 ≤ φ(q)/2, and define δk(q; a1, . . . , ar ) to be the
logarithmic density of the set of x ≥ 2 such that

π(x ; q, a1) > π(x ; q, a2) > · · · > π(x ; q, ak) > max
k+1≤j≤r

π(x ; q, aj).

If everything were uniform, we would expect that

δk(q; a1, . . . , ar ) ≈ (r − k)!/r !.

Note that δk(q; a1, . . . , ar ) is the probability that
X (q, a1) > X (q, a2) > ... > X (q, ak) > maxk+1≤j≤r X (q, aj).
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δk(q; a1, . . . , ar ) is the probability that
X (q, a1) > X (q, a2) > ... > X (q, ak) > maxk+1≤j≤r X (q, aj).
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Other directions

Prime races in function fields : Generalization of Rubinstein-Sarnak
(Cha, 2008),

asymptotic formulas for the densities when r is fixed or
r = o(

√
log q) (Sedrati 2022) ...

Weakening the LI hypothesis: Martin–Ng (2020) and Devin (2020).

Chebyshev’s bias in the number field setting (for Frobenius elements
in Galois extensions): Ng (2000), Fiorilli-Jouve (2020), Bailleul
(2021), Hayani (2024), ....
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Youness Lamzouri (U de Lorraine) The Shanks–Rényi prime number race problem June 17th, 2024 31 / 32



Other directions

Prime races in function fields : Generalization of Rubinstein-Sarnak
(Cha, 2008), asymptotic formulas for the densities when r is fixed or
r = o(

√
log q) (Sedrati 2022) ...

Weakening the LI hypothesis: Martin–Ng (2020) and Devin (2020).

Chebyshev’s bias in the number field setting (for Frobenius elements
in Galois extensions): Ng (2000), Fiorilli-Jouve (2020), Bailleul
(2021), Hayani (2024), ....
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Thank you for your attention!
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