Youness Lamzouri (Université de Lorraine)

Based on joint works with Kevin Ford, Adam Harper and Sergei Konyagin

Comparative Prime Number Theory Symposium UBC, Vancouver June 17th, 2024

Chebyshev's observation

In 1853, Chebyshev wrote a letter to Fuss with the following statement

There is a notable difference in the splitting of the primes between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second.

Chebyshev's observation

In 1853, Chebyshev wrote a letter to Fuss with the following statement

There is a notable difference in the splitting of the primes between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second.

Table: The number of primes of the form 4n + 3 and 4n + 1 up to x (from A. Granville and G. Martin, "prime number races", Amer. Math. Monthly 113 (2006), no. 1, 1–33.)

X	$\pi(x; 4, 3)$	$\pi(x; 4, 1)$
100	13	11
500	50	44
1000	87	80
5000	339	329
10,000	619	609
50,000	2583	2549
100,000	4808	4783

• $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time when x = 26,861.

3 N 3

- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time when x = 26,861.
- For $x \ge 26,863$, $\pi(x; 4, 1) > \pi(x; 4, 3)$ occurs for the first time when x = 616,841, and also at various numbers until 633,798.

- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time when x = 26,861.
- For $x \ge 26,863$, $\pi(x; 4, 1) > \pi(x; 4, 3)$ occurs for the first time when x = 616,841, and also at various numbers until 633,798.
- The first x > 633,798 for which $\pi(x; 4, 1) > \pi(x; 4, 3)$ is x = 12,306,137.

- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time when x = 26,861.
- For $x \ge 26,863$, $\pi(x; 4, 1) > \pi(x; 4, 3)$ occurs for the first time when x = 616,841, and also at various numbers until 633,798.
- The first x > 633,798 for which $\pi(x; 4, 1) > \pi(x; 4, 3)$ is x = 12,306,137.

Theorem (Littlewood 1914)

The difference $\pi(x; 4, 1) - \pi(x; 4, 3)$ changes sign for infinitely many integers x.

Table: The number of primes of the form 3n + 2 and 3n + 1 up to x

x	$\pi(x; 3, 2)$	$\pi(x; 3, 1)$
100	13	11
1000	87	80
10,000	617	611
100,000	4807	4784
1,000,000	39,266	39,231

э

Table: The number of primes of the form 3n + 2 and 3n + 1 up to x

x	$\pi(x; 3, 2)$	$\pi(x; 3, 1)$
100	13	11
1000	87	80
10,000	617	611
100,000	4807	4784
1,000,000	39,266	39,231

Theorem (Littlewood 1914)

 $\pi(x; 3, 1) - \pi(x; 3, 2)$ changes sign for infinitely many integers x.

Table: The number of primes of the form 3n + 2 and 3n + 1 up to x

x	$\pi(x; 3, 2)$	$\pi(x; 3, 1)$
100	13	11
1000	87	80
10,000	617	611
100,000	4807	4784
1,000,000	39,266	39,231

Theorem (Littlewood 1914)

 $\pi(x; 3, 1) - \pi(x; 3, 2)$ changes sign for infinitely many integers x.

Bays and Hudson (Christmas Day of 1976): $\pi(x; 3, 1) > \pi(x; 3, 2)$ for the first time when $x = 608,981,813,029 \approx 6 \times 10^{11}$.

4/32

• Let $q \ge 3$ and $2 \le r \le \varphi(q)$ be positive integers.

- Let $q \ge 3$ and $2 \le r \le \varphi(q)$ be positive integers.
- Let a_1, a_2, \ldots, a_r be distinct residue classes modulo q which are coprime to q.

- Let $q \ge 3$ and $2 \le r \le \varphi(q)$ be positive integers.
- Let a₁, a₂,..., a_r be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called "1" through "r", where at time x, the player "j" has a score of π(x; q, a_j).

- Let $q \ge 3$ and $2 \le r \le \varphi(q)$ be positive integers.
- Let a₁, a₂,..., a_r be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called "1" through "r", where at time x, the player "j" has a score of π(x; q, a_j).
- 1. Will each of the players take the lead for infinitely many integers x?

- Let $q \ge 3$ and $2 \le r \le \varphi(q)$ be positive integers.
- Let a₁, a₂,..., a_r be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called "1" through "r", where at time x, the player "j" has a score of π(x; q, a_i).
- 1. Will each of the players take the lead for infinitely many integers x?
- 2. Will all r! orderings of the players occur for infinitely many integers x?

- Let $q \ge 3$ and $2 \le r \le \varphi(q)$ be positive integers.
- Let a₁, a₂,..., a_r be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called "1" through "r", where at time x, the player "j" has a score of π(x; q, a_i).
- 1. Will each of the players take the lead for infinitely many integers x?
- 2. Will all r! orderings of the players occur for infinitely many integers x?
- 3. What is the "probability" that a particular ordering $\pi(x; q, a_1) > \pi(x; q, a_2) > \cdots > \pi(x; q, a_r)$ occurs?

Haselgrove's condition for the modulus q

For all characters χ modulo q we have $L(s, \chi) \neq 0$ for all $s \in (0, 1)$.

Theorem (Knapowski and Turán, 1962)

Assume Haselgrove's condition for the modulus q. For any (a, q) = 1 such that $a \not\equiv 1 \pmod{q}$, the quantity $\pi(x; q, a) - \pi(x; q, 1)$ changes sign for infinitely many integers x.

Haselgrove's condition for the modulus q

For all characters χ modulo q we have $L(s, \chi) \neq 0$ for all $s \in (0, 1)$.

Theorem (Knapowski and Turán, 1962)

Assume Haselgrove's condition for the modulus q. For any (a, q) = 1 such that $a \not\equiv 1 \pmod{q}$, the quantity $\pi(x; q, a) - \pi(x; q, 1)$ changes sign for infinitely many integers x.

• Rumely (1993) : Haselgrove's condition is true for all $q \leq 72$.

• Sneed (2009) : Haselgrove's condition is true for all $q \leq 100$.

Theorem (Kátai, 1964)

Assume Haselgrove's condition for the modulus q. If $a \not\equiv b \pmod{q}$ are both squares, or both non-squares modulo q, then $\pi(x; q, a) - \pi(x; q, b)$ changes sign for infinitely many integers x.

Theorem (Kátai, 1964)

Assume Haselgrove's condition for the modulus q. If $a \neq b \pmod{q}$ are both squares, or both non-squares modulo q, then $\pi(x; q, a) - \pi(x; q, b)$ changes sign for infinitely many integers x.

Theorem (Sneed, 2009)

For all $q \leq 100$ and all (ab, q) = 1, $\pi(x; q, a) - \pi(x; q, b)$ changes sign for infinitely many integers x.

Assume GRH. Let $q \ge 3$. There exist infinitely many integers x such that

$$\pi(x; q, \mathbf{1}) > \max_{a \not\equiv 1 \mod q} \pi(x; q, a).$$

The same is true for $\pi(x; q, 1) < \min_{a \not\equiv 1 \mod q} \pi(x; q, a)$.

Assume GRH. Let $q \ge 3$. There exist infinitely many integers x such that

$$\pi(x; q, 1) > \max_{\substack{a \not\equiv 1 \mod q}} \pi(x; q, a).$$

The same is true for $\pi(x; q, 1) < \min_{a \not\equiv 1 \mod q} \pi(x; q, a)$.

Theorem (Kaczorowski, 1996)

Assume GRH. For each q ≥ 5, q ≠ 6 one can construct an explicit φ(q)-race such that π(x; q, 1) > π(x; q, b₂)··· > π(x; q, b_{φ(q)}) holds for infinitely many integers x.

Assume GRH. Let $q \ge 3$. There exist infinitely many integers x such that

$$\pi(x; q, 1) > \max_{\substack{a \not\equiv 1 \mod q}} \pi(x; q, a).$$

The same is true for $\pi(x; q, 1) < \min_{a \not\equiv 1 \mod q} \pi(x; q, a)$.

Theorem (Kaczorowski, 1996)

Assume GRH. For each q ≥ 5, q ≠ 6 one can construct an explicit φ(q)-race such that π(x; q, 1) > π(x; q, b₂)··· > π(x; q, b_{φ(q)}) holds for infinitely many integers x. The same is true for a certain ordering π(x; q, 1) < π(x; q, a₂)··· < π(x; q, a_{φ(q)}).

Assume GRH. Let $q \ge 3$. There exist infinitely many integers x such that

$$\pi(x; q, 1) > \max_{\substack{a \not\equiv 1 \mod q}} \pi(x; q, a).$$

The same is true for $\pi(x; q, 1) < \min_{a \not\equiv 1 \mod q} \pi(x; q, a)$.

Theorem (Kaczorowski, 1996)

- Assume GRH. For each q ≥ 5, q ≠ 6 one can construct an explicit φ(q)-race such that π(x; q, 1) > π(x; q, b₂)··· > π(x; q, b_{φ(q)}) holds for infinitely many integers x. The same is true for a certain ordering π(x; q, 1) < π(x; q, a₂)··· < π(x; q, a_{φ(q)}).
- For example
 - $\pi(x; 7, 1) > \pi(x; 7, 5) > \pi(x; 7, 6) > \pi(x; 7, 3) > \pi(x; 7, 4) > \pi(x; 7, 2)$ holds for infinitely many integers x.

Barriers : The work of Ford and Konyagin

Theorem (Ford and Konyagin, 2002)

Let $q \ge 5$ and a_1, a_2, a_3 be distinct residue classes mod q that are coprime to q. Let τ be arbitrarily large.

Barriers : The work of Ford and Konyagin

Theorem (Ford and Konyagin, 2002)

Let $q \ge 5$ and a_1, a_2, a_3 be distinct residue classes mod q that are coprime to q. Let τ be arbitrarily large. There exists a **finite set** $\mathcal{B} = \{\sigma + it : 1/2 < \sigma \le 1 \text{ and } t \ge \tau\}$ (called a barrier), such that if certain *L*-functions $L(s, \chi)$ with $\chi \mod q$ have zeros (with certain multiplicities) in \mathcal{B} then one of the 6 orderings of the functions $\pi(x; q, a_1), \pi(x; q, a_2), \pi(x; q, a_3)$ **does not hold** for large x.

Theorem (Ford and Konyagin, 2002)

Let $q \ge 5$ and a_1, a_2, a_3 be distinct residue classes mod q that are coprime to q. Let τ be arbitrarily large. There exists a **finite set** $\mathcal{B} = \{\sigma + it : 1/2 < \sigma \le 1 \text{ and } t \ge \tau\}$ (called a barrier), such that if certain *L*-functions $L(s, \chi)$ with $\chi \mod q$ have zeros (with certain multiplicities) in \mathcal{B} then one of the 6 orderings of the functions $\pi(x; q, a_1), \pi(x; q, a_2), \pi(x; q, a_3)$ **does not hold** for large x.

Theorem (Ford and Konyagin, 2003)

Fix $q \ge 5$ and an arbitrarily large τ . Let $4 \le r \le \varphi(q)$ and a_1, \ldots, a_r be distinct residue classes mod q that are coprime to q. There exists a **finite** set $\mathcal{B} = \{\sigma + it : 1/2 < \sigma \le 1 \text{ and } t \ge \tau\}$, such that if certain *L*-functions $L(s, \chi)$ with $\chi \mod q$ have zeros (with certain multiplicities) in \mathcal{B} then at most r(r-1) of the r! orderings of the functions $\pi(x; q, a_1), \pi(x; q, a_2), \ldots, \pi(x; q, a_r)$ occur for large x.

Densities in the prime number race problem

Conjecture (Knapowski-Turàn 1962)

As $X \to \infty$, the percentage of integers $x \le X$ for which $\pi(x; 4, 1) > \pi(x; 4, 3)$ goes to to 0%.

Densities in the prime number race problem

Conjecture (Knapowski-Turàn 1962)

As $X \to \infty$, the percentage of integers $x \le X$ for which $\pi(x; 4, 1) > \pi(x; 4, 3)$ goes to to 0%.

The following table gives, for X in various ranges, the maximum percentage of values of $x \le X$ for which $\pi(x; 4, 1) > \pi(x; 4, 3)$:

Table:

For X in the range	Maximum percentage of such $x \leq X$
$0 - 10^{7}$	2.6%
$10^7 - 10^8$	0.6%
$10^7 - 10^8$	0.6%
$10^8 - 10^9$	0.1%
$10^9 - 10^{10}$	1.6%
$10^{10} - 10^{11}$	2.8%

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B} = \{\sigma + it : 0 \le \sigma \le 1 \text{ and } \sigma \ne 1/2\}$ such that if $L(s, \chi_1)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_1 is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

11 / 32

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B} = \{\sigma + it : 0 \le \sigma \le 1 \text{ and } \sigma \ne 1/2\}$ such that if $L(s, \chi_1)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_1 is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

• The hypothetical zeros of $L(s, \chi_1)$ can be chosen with arbitrarily large imaginary parts.

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B} = \{\sigma + it : 0 \le \sigma \le 1 \text{ and } \sigma \ne 1/2\}$ such that if $L(s, \chi_1)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_1 is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

- The hypothetical zeros of $L(s, \chi_1)$ can be chosen with arbitrarily large imaginary parts.
- They can be arbitrarily close to the critical line Re(s) = 1/2.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B} = \{\sigma + it : 0 \le \sigma \le 1 \text{ and } \sigma \ne 1/2\}$ such that if $L(s, \chi_1)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_1 is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

- The hypothetical zeros of $L(s, \chi_1)$ can be chosen with arbitrarily large imaginary parts.
- They can be arbitrarily close to the critical line Re(s) = 1/2.
- \mathcal{B} is a very "thin" set. Indeed, our construction involves $O\left((\log T)^{5/4}\right)$ zeros (counted with multiplicity) with imaginary part less than T.

11/32

- 4 回 ト 4 ヨ ト 4 ヨ ト

Assume GRH. For any (a, q) = 1 such that $a \not\equiv 1 \mod q$, the set of positive integers x for which $\pi(x; q, 1) > \pi(x; q, a)$ has a positive lower density.

Assume GRH. For any (a, q) = 1 such that $a \not\equiv 1 \mod q$, the set of positive integers x for which $\pi(x; q, 1) > \pi(x; q, a)$ has a positive lower density.

Theorem (Ford, Konyagin and L. 2013)

Let *a*, *b* be distinct reduced residue classes modulo *q*. We can construct a set $\mathcal{B} = \{\sigma + it : 0 \le \sigma \le 1 \text{ and } \sigma \ne 1/2\}$ such that if a certain $L(s, \chi)$ has zeros (with certain multiplicities) in \mathcal{B} , then the percentage of integers $x \le X$ for which $\pi(x; q, a) > \pi(x; q, b)$ goes to 0%.

Chebyshev's Bias

There seem to be "more" primes of the form qn + a than of the form qn + b if a is **non-square** and b is a **square** modulo q.

Chebyshev's Bias

There seem to be "more" primes of the form qn + a than of the form qn + b if a is **non-square** and b is a **square** modulo q.

Table: The number of primes of the form 10n + j up to x

x	Last Digit 1	Last Digit 3	Last Digit 7	Last Digit 9
1000	40	42	46	38
10,000	306	310	308	303
100,000	2387	2402	2411	2390
1,000,000	19,617	19,665	19,621	19,593

x	$\pi(x; 8, 1)$	$\pi(x; 8, 3)$	$\pi(x; 8, 5)$	$\pi(x; 8, 7)$
1000	37	44	43	43
10,000	295	311	314	308
100,000	2384	2409	2399	2399
1,000,000	19,552	19,653	19,623	19,669

Table: The number of primes of the form 8n + j up to x

< ∃⇒

< □ > < 同 >

æ

Assume the Generalized Riemann Hypothesis. The quantity

$$\frac{1}{X}|\{x \le X : \pi(x; 4, 3) > \pi(x; 4, 1)\}$$

does not tend to any limit as $X \to \infty$.

Assume the Generalized Riemann Hypothesis. The quantity

$$\frac{1}{X}|\{x \le X : \pi(x; 4, 3) > \pi(x; 4, 1)\}|$$

does not tend to any limit as $X \to \infty$.

Rubinstein and Sarnak (1994)

• The natural density is not the correct way to measure the bias!

Assume the Generalized Riemann Hypothesis. The quantity

$$\frac{1}{X}|\{x \le X : \pi(x; 4, 3) > \pi(x; 4, 1)\}|$$

does not tend to any limit as $X \to \infty$.

Rubinstein and Sarnak (1994)

- The natural density is not the correct way to measure the bias!
- The adequate measure to use is the logarithmic measure.

Assume the Generalized Riemann Hypothesis. The quantity

$$\frac{1}{X}|\{x \le X : \pi(x; 4, 3) > \pi(x; 4, 1)\}|$$

does not tend to any limit as $X \to \infty$.

Rubinstein and Sarnak (1994)

- The natural density is not the correct way to measure the bias!
- The adequate measure to use is the logarithmic measure.
- Need to use the Generalized Riemann Hypothesis and the *Linear Independence Conjecture LI*, which is the assumption that the positive imaginary parts of the zeros of the associated Dirichlet *L*-functions are linearly independent over the rational numbers.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. As $X \to \infty$,

$$\frac{1}{\log X} \sum_{\substack{x \le X \\ \pi(x;4,3) > \pi(x;4,1)}} \frac{1}{x} \to 0.9959\dots$$

Youness Lamzouri (U de Lorraine) The Shanks-Rényi prime number race probler June

3. 3

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. As $X \to \infty$,

$$\frac{1}{\log X} \sum_{\substack{x \leq X \\ \pi(x;4,3) > \pi(x;4,1)}} \frac{1}{x} \to 0.9959 \dots$$

Chebyshev was correct 99.59% of the time!

< ∃⇒

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. As $X \to \infty$,

$$\frac{1}{\log X} \sum_{\substack{x \leq X \\ \pi(x;4,3) > \pi(x;4,1)}} \frac{1}{x} \to 0.9959\dots$$

Chebyshev was correct 99.59% of the time!

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Let a, b be distinct reduced residue classes modulo q. The *logarithmic density*

$$\delta(q; a, b) := \lim_{X \to \infty} \frac{1}{\log X} \int_{\substack{t \in [2, X] \\ \pi(t; q, a) > \pi(t; q, b)}} \frac{dt}{t}$$

exists and is positive.

표 제 표

Theorem (Rubinstein-Sarnak, 1994)

Assume GRH and LI.

• $\delta(q; a, b) = \frac{1}{2}$ if a and b are both squares or both non-squares modulo q.

Theorem (Rubinstein-Sarnak, 1994)

Assume GRH and LI.

- $\delta(q; a, b) = \frac{1}{2}$ if a and b are both squares or both non-squares modulo q.
- Chebyshev's bias: δ(q; a, b) > 1/2 if a is a non-square and b is a square modulo q.

Theorem (Rubinstein-Sarnak, 1994)

Assume GRH and LI.

- $\delta(q; a, b) = \frac{1}{2}$ if a and b are both squares or both non-squares modulo q.
- Chebyshev's bias: δ(q; a, b) > 1/2 if a is a non-square and b is a square modulo q.
- $\delta(4; 3, 1) = 0.9959...$ and $\delta(3; 2, 1) = 0.9990...$

- Let 2 ≤ r ≤ φ(q) and a₁,..., a_r be distinct residue classes modulo q which are coprime to q.
- Let $P(q; a_1, \ldots, a_r)$ be the set of positive integer x such that

 $\pi(x;q,a_1)>\pi(a;q,a_2)>\cdots>\pi(x;q,a_r).$

- Let 2 ≤ r ≤ φ(q) and a₁,..., a_r be distinct residue classes modulo q which are coprime to q.
- Let $P(q; a_1, \ldots, a_r)$ be the set of positive integer x such that

 $\pi(x;q,a_1)>\pi(a;q,a_2)>\cdots>\pi(x;q,a_r).$

Theorem (Rubinstein and Sarnak, 1994)
Assume GRH and LI. The logarithmic density of
$$P(q; a_1, ..., a_r)$$
 defined by
 $\delta(q; a_1, ..., a_r) := \lim_{X \to \infty} \frac{1}{\log X} \int_{t \in P(q; a_1, ..., a_r) \cap [2, X]} \frac{dt}{t},$
exists and is positive.

Youness Lamzouri (U de Lorraine) The Shanks-Rényi prime number race probler June 17th, 2024

- Let 2 ≤ r ≤ φ(q) and a₁,..., a_r be distinct residue classes modulo q which are coprime to q.
- Let $P(q; a_1, \ldots, a_r)$ be the set of positive integer x such that

 $\pi(x;q,a_1)>\pi(a;q,a_2)>\cdots>\pi(x;q,a_r).$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. The logarithmic density of $P(q; a_1, \ldots, a_r)$ defined by

$$\delta(q; a_1, \ldots, a_r) := \lim_{X \to \infty} \frac{1}{\log X} \int_{t \in P(q; a_1, \ldots, a_r) \cap [2, X]} \frac{du}{t}$$

exists and is positive.

 $\delta(q; a_1, \ldots, a_r)$ is the "**probability**" that $\pi(x; q, a_1) > \cdots > \pi(x; q, a_r)$.

The race {q; a₁,..., a_r} is said to be unbiased if for every permutation σ of the set {1, 2, ..., r} we have

$$\delta(q; a_{\sigma(1)}, \ldots, a_{\sigma(r)}) = \delta(q; a_1, \ldots, a_r) = \frac{1}{r!}.$$

The race {q; a₁,..., a_r} is said to be unbiased if for every permutation σ of the set {1, 2, ..., r} we have

$$\delta(q; a_{\sigma(1)}, \ldots, a_{\sigma(r)}) = \delta(q; a_1, \ldots, a_r) = \frac{1}{r!}.$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

• A two-way prime number race {q; a₁, a₂} is unbiased if and only if a₁, a₂ are both squares or both non-squares modulo q.

The race {q; a₁,..., a_r} is said to be unbiased if for every permutation σ of the set {1, 2, ..., r} we have

$$\delta(q; a_{\sigma(1)}, \ldots, a_{\sigma(r)}) = \delta(q; a_1, \ldots, a_r) = \frac{1}{r!}.$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

- A two-way prime number race {q; a₁, a₂} is unbiased if and only if a₁, a₂ are both squares or both non-squares modulo q.
- If r = 3 and a_1, a_2, a_3 verify $a_2 \equiv \rho a_1 \mod q$ and $a_3 \equiv \rho a_2 \mod q$ where $\rho^3 \equiv 1 \mod q$, then the race $\{q; a_1, a_2, a_3\}$ is unbiased.

The race {q; a₁,..., a_r} is said to be unbiased if for every permutation σ of the set {1, 2, ..., r} we have

$$\delta(q; a_{\sigma(1)}, \ldots, a_{\sigma(r)}) = \delta(q; a_1, \ldots, a_r) = \frac{1}{r!}.$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

- A two-way prime number race {q; a1, a2} is unbiased if and only if a1, a2 are both squares or both non-squares modulo q.
- If r = 3 and a_1, a_2, a_3 verify $a_2 \equiv \rho a_1 \mod q$ and $a_3 \equiv \rho a_2 \mod q$ where $\rho^3 \equiv 1 \mod q$, then the race $\{q; a_1, a_2, a_3\}$ is unbiased.

If a race $\{q; a_1, \ldots, a_r\}$ is unbiased, then all the a_i must be either squares or either non-squares modulo q.

The race {q; a₁,..., a_r} is said to be unbiased if for every permutation σ of the set {1, 2, ..., r} we have

$$\delta(q; a_{\sigma(1)}, \ldots, a_{\sigma(r)}) = \delta(q; a_1, \ldots, a_r) = \frac{1}{r!}.$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

- A two-way prime number race {q; a1, a2} is unbiased if and only if a1, a2 are both squares or both non-squares modulo q.
- If r = 3 and a_1, a_2, a_3 verify $a_2 \equiv \rho a_1 \mod q$ and $a_3 \equiv \rho a_2 \mod q$ where $\rho^3 \equiv 1 \mod q$, then the race $\{q; a_1, a_2, a_3\}$ is unbiased.

If a race $\{q; a_1, \ldots, a_r\}$ is unbiased, then all the a_i must be either squares or either non-squares modulo q.

 Guess: If a₁,..., a_r are all squares or all non-squares modulo q, then the race {q; a₁,..., a_r} is unbiased.

• Feuerverger and Martin (2000): Our guess is wrong!

Assume GRH and LI. The races $\{8; 3, 5, 7\}$ and $\{12; 5, 7, 11\}$ are **biased**.

• Feuerverger and Martin (2000): Our guess is wrong!

Assume GRH and LI. The races $\{8; 3, 5, 7\}$ and $\{12; 5, 7, 11\}$ are **biased**.

- All the densities δ(q; a₁,..., a_r) they computed are such that r ≤ 4 and q ≤ 12.
- It is difficult to compute these densities, since we need to use many zeros of Dirichlet *L*-functions!

• Feuerverger and Martin (2000): Our guess is wrong!

Assume GRH and LI. The races $\{8; 3, 5, 7\}$ and $\{12; 5, 7, 11\}$ are **biased**.

- All the densities δ(q; a₁,..., a_r) they computed are such that r ≤ 4 and q ≤ 12.
- It is difficult to compute these densities, since we need to use many zeros of Dirichlet *L*-functions!

Theorem (L, 2013)

Assume GRH and LI. Fix $r \ge 3$. There exists a constant $q_0(r)$ such that if $q \ge q_0(r)$ then

• There exist distinct residue classes $a_1, \ldots, a_r \mod q$, with $(a_i, q) = 1$, a_1, \ldots, a_r are squares modulo q and the race $\{q; a_1, \ldots, a_r\}$ is biased.

• Feuerverger and Martin (2000): Our guess is wrong!

Assume GRH and LI. The races $\{8; 3, 5, 7\}$ and $\{12; 5, 7, 11\}$ are **biased**.

- All the densities δ(q; a₁,..., a_r) they computed are such that r ≤ 4 and q ≤ 12.
- It is difficult to compute these densities, since we need to use many zeros of Dirichlet *L*-functions!

Theorem (L, 2013)

Assume GRH and LI. Fix $r \ge 3$. There exists a constant $q_0(r)$ such that if $q \ge q_0(r)$ then

- There exist distinct residue classes $a_1, \ldots, a_r \mod q$, with $(a_i, q) = 1$, a_1, \ldots, a_r are squares modulo q and the race $\{q; a_1, \ldots, a_r\}$ is biased.
- There exist distinct residue classes b₁,..., b_r mod q, with (b_i, q) = 1, b₁,..., b_r are non-squares mod q and the race {q; b₁,..., b_r} is biased.

 $\delta(4; 3, 1) = 0.9959...$ (Rubinstein-Sarnak, 1994) $\delta(420; 17, 1) = 0.7956...$ (Fiorilli-Martin, 2009) $\delta(997; 11, 1) = 0.5082...$ (Fiorilli-Martin, 2009)

 $\delta(4; 3, 1) = 0.9959...$ (Rubinstein-Sarnak, 1994) $\delta(420; 17, 1) = 0.7956...$ (Fiorilli-Martin, 2009) $\delta(997; 11, 1) = 0.5082...$ (Fiorilli-Martin, 2009)

The bias towards non-squares becomes "less pronounced" when q grows.

 $\delta(4; 3, 1) = 0.9959...$ (Rubinstein-Sarnak, 1994) $\delta(420; 17, 1) = 0.7956...$ (Fiorilli-Martin, 2009) $\delta(997; 11, 1) = 0.5082...$ (Fiorilli-Martin, 2009)

The bias towards non-squares becomes "less pronounced" when q grows.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. We have

$$\max_{a_1,a_2 \bmod q} \left| \delta(q;a_1,a_2) - \frac{1}{2} \right| \to 0 \text{ as } q \to \infty.$$

Youness Lamzouri (U de Lorraine) The Shanks–Rényi prime number race probler

 $\delta(4; 3, 1) = 0.9959...$ (Rubinstein-Sarnak, 1994) $\delta(420; 17, 1) = 0.7956...$ (Fiorilli-Martin, 2009) $\delta(997; 11, 1) = 0.5082...$ (Fiorilli-Martin, 2009)

The bias towards non-squares becomes "less pronounced" when q grows.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. We have

$$\max_{a_1,a_2 \bmod q} \left| \delta(q;a_1,a_2) - \frac{1}{2} \right| \to 0 \text{ as } q \to \infty.$$

More generally if $r \ge 2$ is fixed, then

$$\max_{a_1,a_2,\ldots,a_r \bmod q} \left| \delta(q;a_1,\ldots,a_r) - \frac{1}{r!} \right| \to 0 \text{ as } q \to \infty.$$

$$\Delta_r(q) := \max_{a_1,a_2,\ldots,a_r \bmod q} \left| \delta(q;a_1,\ldots,a_r) - \frac{1}{r!} \right|.$$

Let

Youness Lamzouri (U de Lorraine) The Shanks-Rényi prime number race probler

3

Let

$$\Delta_r(q) := \max_{a_1,a_2,\ldots,a_r \mod q} \left| \delta(q;a_1,\ldots,a_r) - \frac{1}{r!} \right|.$$

Theorem (Fiorilli and Martin, 2009)

Assume GRH and LI. We have

$$\Delta_2(q)\sim rac{
ho(q)}{2\sqrt{\piarphi(q)\log q}}=rac{1}{q^{1/2+o(1)}},$$

where $\rho(q)$ is the number of solutions of $t^2 \equiv 1 \mod q$, and o(1) is a quantity which goes to 0 as $q \to \infty$.

Let

$$\Delta_r(q) := \max_{a_1,a_2,\ldots,a_r \mod q} \left| \delta(q;a_1,\ldots,a_r) - \frac{1}{r!} \right|.$$

Theorem (Fiorilli and Martin, 2009)

Assume GRH and LI. We have

$$\Delta_2(q)\sim rac{
ho(q)}{2\sqrt{\piarphi(q)\log q}}=rac{1}{q^{1/2+o(1)}},$$

where $\rho(q)$ is the number of solutions of $t^2 \equiv 1 \mod q$, and o(1) is a quantity which goes to 0 as $q \to \infty$.

Theorem (L, 2013)

Assume GRH and LI. Let $r \ge 3$ be a fixed integer. There exist positive constants $c_1(r)$, $c_2(r)$ and a positive integer q_0 such that, if $q \ge q_0$ then

$$\frac{c_1(r)}{\log q} \leq \Delta_r(q) \leq \frac{c_2(r)}{\log q}.$$

The random verctor associated to a prime number race

• For a non-principal Dirichlet character $\chi \neq \chi_0$, let $\{1/2 + i\gamma_{\chi}\}$ be the sequence of non-trivial zeros of the Dirichlet *L*-function $L(s, \chi)$, and let $S_q = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} : \gamma_{\chi} > 0\}$.

The random verctor associated to a prime number race

- For a non-principal Dirichlet character $\chi \neq \chi_0$, let $\{1/2 + i\gamma_{\chi}\}$ be the sequence of non-trivial zeros of the Dirichlet *L*-function $L(s, \chi)$, and let $S_q = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} : \gamma_{\chi} > 0\}.$
- Let {U(γ_χ)}_{γ_χ∈S_q} be a sequence of independent random variables uniformly distributed on the unit circle U = {z ∈ C : |z| = 1}.

The random verctor associated to a prime number race

- For a non-principal Dirichlet character $\chi \neq \chi_0$, let $\{1/2 + i\gamma_{\chi}\}$ be the sequence of non-trivial zeros of the Dirichlet *L*-function $L(s, \chi)$, and let $S_q = \bigcup_{\chi \neq \chi_0 \mod q} \{\gamma_{\chi} : \gamma_{\chi} > 0\}.$
- Let {U(γ_χ)}_{γ_χ∈S_q} be a sequence of independent random variables uniformly distributed on the unit circle U = {z ∈ C : |z| = 1}.
- We consider the random variables

$$X(q, a) = -c_q(a) + \sum_{\substack{\chi \neq \chi_0 \ \chi \mod q}} \sum_{\substack{\gamma_\chi > 0}} \frac{2\operatorname{Re}(\chi(a)U(\gamma_\chi))}{\sqrt{rac{1}{4} + \gamma_\chi^2}},$$

where

$$c_q(a) := -1 + |\{b \mod q : b^2 \equiv a \mod q\}| = q^{o(1)}.$$

Assume GRH and LI. Then we have

$$\delta(q; a_1, \ldots, a_r) = \mathbb{P}\Big(X(q, a_1) > X(q, a_2) > \cdots > X(q, a_r)\Big).$$

3 N 3

Assume GRH and LI. Then we have

$$\delta(q; a_1, \ldots, a_r) = \mathbb{P}\Big(X(q, a_1) > X(q, a_2) > \cdots > X(q, a_r)\Big).$$

• The mean vector of $(X(q, a_1), X(q, a_2), \ldots, > X(q, a_r))$ equals $(-c_q(a_1), \ldots, -c_q(a_r))$ and is responsible for Chebyshev's Bias (if r = 2).

Assume GRH and LI. Then we have

$$\delta(q; a_1, \ldots, a_r) = \mathbb{P}\Big(X(q, a_1) > X(q, a_2) > \cdots > X(q, a_r)\Big).$$

- The mean vector of $(X(q, a_1), X(q, a_2), \ldots, > X(q, a_r))$ equals $(-c_q(a_1), \ldots, -c_q(a_r))$ and is responsible for Chebyshev's Bias (if r = 2).
- The covariance matrix of (X(q, a₁), X(q, a₂), ..., > X(q, a_r)), noted Cov_{q;a₁,...,a_r}(j, k) satisfies

$$\operatorname{Cov}_{q;a_1,\ldots,a_r}(j,k) \begin{cases} \sim \varphi(q) \log q & \text{if } j = k \\ = O(\varphi(q)) & \text{if } j \neq k. \end{cases}$$

Youness Lamzouri (U de Lorraine) The Shanks–Rényi prime number race probler

Assume GRH and LI. Then we have

$$\delta(q; a_1, \ldots, a_r) = \mathbb{P}\Big(X(q, a_1) > X(q, a_2) > \cdots > X(q, a_r)\Big).$$

- The mean vector of $(X(q, a_1), X(q, a_2), \ldots, > X(q, a_r))$ equals $(-c_q(a_1), \ldots, -c_q(a_r))$ and is responsible for Chebyshev's Bias (if r = 2).
- The covariance matrix of (X(q, a₁), X(q, a₂), ..., > X(q, a_r)), noted Cov_{q;a₁,...,a_r}(j, k) satisfies

$$\operatorname{Cov}_{q;a_1,\ldots,a_r}(j,k) \begin{cases} \sim \varphi(q) \log q & \text{if } j = k \\ = O(\varphi(q)) & \text{if } j \neq k. \end{cases}$$

• The random variables X(q, a) are weakly correlated,

Assume GRH and LI. Then we have

$$\delta(q; a_1, \ldots, a_r) = \mathbb{P}\Big(X(q, a_1) > X(q, a_2) > \cdots > X(q, a_r)\Big).$$

- The mean vector of $(X(q, a_1), X(q, a_2), \ldots, > X(q, a_r))$ equals $(-c_q(a_1), \ldots, -c_q(a_r))$ and is responsible for Chebyshev's Bias (if r = 2).
- The covariance matrix of (X(q, a₁), X(q, a₂), ..., > X(q, a_r)), noted Cov_{q;a₁,...,a_r}(j, k) satisfies

$$\operatorname{Cov}_{q;a_1,\ldots,a_r}(j,k) \begin{cases} \sim \varphi(q) \log q & \text{if } j = k \\ = O(\varphi(q)) & \text{if } j \neq k. \end{cases}$$

The random variables X(q, a) are weakly correlated, and their correlations govern the behavior of Δ_r(q) for r ≥ 3.

The size of $\delta(q; a_1, \ldots, a_r)$ when $r \to \infty$ as $q \to \infty$

Conjecture (Feuerverger-Martin, 2000)

There exist a function $r_0(q)$ with $r_0(q) \to \infty$ as $q \to \infty$, such that for any integer $r \le r_0(q)$ we have

$$\lim_{q\to\infty}\max_{a_1,\ldots,a_r \bmod q}|r!\delta(q;a_1,\ldots,a_r)-1|=0,$$

The size of $\delta(q; a_1, \ldots, a_r)$ when $r \to \infty$ as $q \to \infty$

Conjecture (Feuerverger-Martin, 2000)

There exist a function $r_0(q)$ with $r_0(q) \to \infty$ as $q \to \infty$, such that for any integer $r \le r_0(q)$ we have

$$\lim_{q\to\infty}\max_{a_1,\ldots,a_r \bmod q}|r!\delta(q;a_1,\ldots,a_r)-1|=0,$$

Theorem (L, 2012)

• The Feuerverger-Martin is true under GRH and LI.

The size of $\delta(q; a_1, \ldots, a_r)$ when $r \to \infty$ as $q \to \infty$

Conjecture (Feuerverger-Martin, 2000)

There exist a function $r_0(q)$ with $r_0(q) \to \infty$ as $q \to \infty$, such that for any integer $r \le r_0(q)$ we have

$$\lim_{q\to\infty}\max_{a_1,\ldots,a_r \bmod q}|r!\delta(q;a_1,\ldots,a_r)-1|=0,$$

Theorem (L, 2012)

- The Feuerverger-Martin is true under GRH and LI.
- Assume GRH and LI. For any integer r such that $2 \le r \le \sqrt{\log q}$ we have uniformly for all r-tuples (a_1, \ldots, a_r) of distinct reduced residue classes modulo q

$$\delta(q; a_1, \ldots, a_r) = \frac{1}{r!} \left(1 + O\left(\frac{r^2}{\log q}\right) \right)$$

< 1 k

Conjecture (Ford and L., 2011)

1. If $2 \le r \le (\log q)^{1-\varepsilon}$, then uniformly for all *r*-tuples (a_1, \ldots, a_r) of distinct reduced residue classes modulo q we have

$$\delta(q; a_1, \ldots, a_r) \sim \frac{1}{r!}$$

as $q \to \infty$.

Conjecture (Ford and L., 2011)

1. If $2 \le r \le (\log q)^{1-\varepsilon}$, then uniformly for all *r*-tuples (a_1, \ldots, a_r) of distinct reduced residue classes modulo q we have

$$\delta(q; a_1, \ldots, a_r) \sim \frac{1}{r!}$$

as $q \to \infty$.

2. If $(\log q)^{1+\varepsilon} \leq r \leq \varphi(q)$, then there exist *r*-tuples $(a_1, \ldots, a_r), (b_1, \ldots, b_r)$ for which we have as $q \to \infty$

$$r! \cdot \delta(q; a_1, \ldots, a_r) \rightarrow 0$$

and

$$r! \cdot \delta(q; b_1, \ldots, b_r) \to \infty.$$

• Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.

- Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.
- Assume GRH and LI. Let 2 ≤ r ≤ log q/(log log q)⁴ be a positive integer. Then, uniformly for all r-tuples (a₁,..., a_r) of distinct reduced residue classes modulo q we have

$$\delta(q; a_1, \ldots, a_r) = \frac{1}{r!} \left(1 + O\left(\frac{r(\log r)^4}{\log q}\right) \right)$$

- Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.
- Assume GRH and LI. Let 2 ≤ r ≤ log q/(log log q)⁴ be a positive integer. Then, uniformly for all r-tuples (a₁,..., a_r) of distinct reduced residue classes modulo q we have

$$\delta(q; a_1, \ldots, a_r) = \frac{1}{r!} \left(1 + O\left(\frac{r(\log r)^4}{\log q}\right) \right)$$

The main ingredient of the proof is a harmonic analysis estimate related to the Hardy-Littlewood circle method, and inspired by work of Bourgain.

- Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.
- Assume GRH and LI. Let 2 ≤ r ≤ log q/(log log q)⁴ be a positive integer. Then, uniformly for all r-tuples (a₁,..., a_r) of distinct reduced residue classes modulo q we have

$$\delta(q; a_1, \ldots, a_r) = \frac{1}{r!} \left(1 + O\left(\frac{r(\log r)^4}{\log q}\right) \right)$$

The main ingredient of the proof is a harmonic analysis estimate related to the Hardy-Littlewood circle method, and inspired by work of Bourgain. This is used to control the average size of the **correlations** of the random variables $X(q, a_1), \ldots, X(q, a_r)$.

Theorem (Ford, Harper, and L. 2019)

Assume GRH and LI. If $\log q \leq r \leq \varphi(q)$, then there exist *r*-tuples $(a_1, \ldots, a_r), (b_1, \ldots, b_r)$ of distinct reduced residues mod q such that

$$\delta(q; a_1, \ldots, a_r) \leq \exp\left(-\frac{\min\{r, \varphi(q)^{1/50}\}}{C\log q}\right) \frac{1}{r!},$$

and

$$\delta(q; b_1, \ldots, b_r) \ge \exp\left(rac{\min\{r, \varphi(q)^{1/50}\}}{C\log q}
ight)rac{1}{r!}$$

for some absolute constant C > 0.

Theorem (Ford, Harper, and L. 2019)

Assume GRH and LI. If $\log q \leq r \leq \varphi(q)$, then there exist *r*-tuples $(a_1, \ldots, a_r), (b_1, \ldots, b_r)$ of distinct reduced residues mod *q* such that

$$\delta(q; a_1, \ldots, a_r) \leq \exp\left(-\frac{\min\{r, \varphi(q)^{1/50}\}}{C\log q}\right) \frac{1}{r!},$$

and

$$\delta(q; b_1, \dots, b_r) \ge \exp\left(rac{\min\{r, arphi(q)^{1/50}\}}{C\log q}
ight)rac{1}{r}$$

for some absolute constant C > 0.

• This establishes the second part of Ford and Lamzouri's Conjecture (under GRH and LI) as soon as $r/\log q \rightarrow \infty$.

• We extract these extreme biases from auxiliary prime races.

Ingredients of the proof

- We extract these extreme biases from auxiliary prime races.
- Let 1 ≤ k ≤ r/2 ≤ φ(q)/2, and define δ_k(q; a₁,..., a_r) to be the logarithmic density of the set of x ≥ 2 such that

 $\pi(x; q, a_1) > \pi(x; q, a_2) > \cdots > \pi(x; q, a_k) > \max_{k+1 \leq j \leq r} \pi(x; q, a_j).$

Ingredients of the proof

- We extract these extreme biases from auxiliary prime races.
- Let 1 ≤ k ≤ r/2 ≤ φ(q)/2, and define δ_k(q; a₁,..., a_r) to be the logarithmic density of the set of x ≥ 2 such that

$$\pi(x; q, a_1) > \pi(x; q, a_2) > \cdots > \pi(x; q, a_k) > \max_{k+1 \leq j \leq r} \pi(x; q, a_j).$$

• If everything were uniform, we would expect that

 $\delta_k(q; a_1, \ldots, a_r) \approx (r-k)!/r!.$

Ingredients of the proof

- We extract these extreme biases from auxiliary prime races.
- Let 1 ≤ k ≤ r/2 ≤ φ(q)/2, and define δ_k(q; a₁,..., a_r) to be the logarithmic density of the set of x ≥ 2 such that

$$\pi(x;q,a_1)>\pi(x;q,a_2)>\cdots>\pi(x;q,a_k)>\max_{k+1\leq j\leq r}\pi(x;q,a_j).$$

If everything were uniform, we would expect that

$$\delta_k(q; a_1, \ldots, a_r) \approx (r-k)!/r!.$$

• Note that $\delta_k(q; a_1, \ldots, a_r)$ is the probability that $X(q, a_1) > X(q, a_2) > \ldots > X(q, a_k) > \max_{k+1 \le j \le r} X(q, a_j)$.

- $\delta_k(q; a_1, \ldots, a_r)$ is the probability that $X(q, a_1) > X(q, a_2) > \ldots > X(q, a_k) > \max_{k+1 \le j \le r} X(q, a_j).$
- We want to "replace" the X(q, a) with **Gaussian** random variables Z(q, a) with the same **mean** and **correlations** as the X(q, a).

- $\delta_k(q; a_1, \ldots, a_r)$ is the probability that $X(q, a_1) > X(q, a_2) > \ldots > X(q, a_k) > \max_{k+1 \le j \le r} X(q, a_j).$
- We want to "replace" the X(q, a) with **Gaussian** random variables Z(q, a) with the same **mean** and **correlations** as the X(q, a).
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.

- $\delta_k(q; a_1, \ldots, a_r)$ is the probability that $X(q, a_1) > X(q, a_2) > \ldots > X(q, a_k) > \max_{k+1 \le j \le r} X(q, a_j).$
- We want to "replace" the X(q, a) with **Gaussian** random variables Z(q, a) with the same **mean** and **correlations** as the X(q, a).
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max_{k+1 \le j \le r} Z(q, a_j)$ is around $\sqrt{2 \log r}$ with high probability.

- $\delta_k(q; a_1, \ldots, a_r)$ is the probability that $X(q, a_1) > X(q, a_2) > \ldots > X(q, a_k) > \max_{k+1 \le j \le r} X(q, a_j).$
- We want to "replace" the X(q, a) with **Gaussian** random variables Z(q, a) with the same **mean** and **correlations** as the X(q, a).
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max_{k+1 \le j \le r} Z(q, a_j)$ is around $\sqrt{2 \log r}$ with high probability.
- We arrange for Z(q, a₁), · · · , Z(q, a_k) to have large (negative) correlations of size -c/log q.

- $\delta_k(q; a_1, \ldots, a_r)$ is the probability that $X(q, a_1) > X(q, a_2) > \ldots > X(q, a_k) > \max_{k+1 \le j \le r} X(q, a_j).$
- We want to "replace" the X(q, a) with **Gaussian** random variables Z(q, a) with the same **mean** and **correlations** as the X(q, a).
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max_{k+1 \le j \le r} Z(q, a_j)$ is around $\sqrt{2 \log r}$ with high probability.
- We arrange for Z(q, a₁), · · · , Z(q, a_k) to have large (negative) correlations of size -c/log q.

• This produces a bias of size $\exp(-ck \frac{(\sqrt{2\log r})^2}{\log q}) = \exp(-c_0 k \frac{\log r}{\log q})$.

- $\delta_k(q; a_1, \ldots, a_r)$ is the probability that $X(q, a_1) > X(q, a_2) > \ldots > X(q, a_k) > \max_{k+1 \le j \le r} X(q, a_j).$
- We want to "replace" the X(q, a) with **Gaussian** random variables Z(q, a) with the same **mean** and **correlations** as the X(q, a).
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max_{k+1 \le j \le r} Z(q, a_j)$ is around $\sqrt{2 \log r}$ with high probability.
- We arrange for Z(q, a₁), · · · , Z(q, a_k) to have large (negative) correlations of size -c/log q.
- This produces a bias of size $\exp(-ck \frac{(\sqrt{2\log r})^2}{\log q}) = \exp(-c_0 k \frac{\log r}{\log q})$.
- We finally choose k such that $k \log r / \log q \to \infty$ as $q \to \infty$.

• Prime races in function fields : Generalization of Rubinstein-Sarnak (Cha, 2008),

∃ →

• Prime races in function fields : Generalization of Rubinstein-Sarnak (Cha, 2008), asymptotic formulas for the densities when r is fixed or $r = o(\sqrt{\log q})$ (Sedrati 2022) ...

- Prime races in function fields : Generalization of Rubinstein-Sarnak (Cha, 2008), asymptotic formulas for the densities when r is fixed or $r = o(\sqrt{\log q})$ (Sedrati 2022) ...
- Weakening the LI hypothesis: Martin-Ng (2020) and Devin (2020).

- Prime races in function fields : Generalization of Rubinstein-Sarnak (Cha, 2008), asymptotic formulas for the densities when r is fixed or $r = o(\sqrt{\log q})$ (Sedrati 2022) ...
- Weakening the LI hypothesis: Martin–Ng (2020) and Devin (2020).
- Chebyshev's bias in the number field setting (for Frobenius elements in Galois extensions): Ng (2000), Fiorilli-Jouve (2020), Bailleul (2021), Hayani (2024),

Thank you for your attention!

▶ < ∃ >

< □ > < 同 >

æ