The Shanks-Rényi prime number race problem

Youness Lamzouri (Université de Lorraine)
Based on joint works with Kevin Ford, Adam Harper and Sergei Konyagin

Comparative Prime Number Theory Symposium UBC, Vancouver

June 17th, 2024

Chebyshev's observation

In 1853, Chebyshev wrote a letter to Fuss with the following statement
There is a notable difference in the splitting of the primes between the two forms $4 n+3,4 n+1$: the first form contains a lot more than the second.

Chebyshev's observation

In 1853, Chebyshev wrote a letter to Fuss with the following statement
There is a notable difference in the splitting of the primes between the two forms $4 n+3,4 n+1$: the first form contains a lot more than the second.

Table: The number of primes of the form $4 n+3$ and $4 n+1$ up to x (from A. Granville and G. Martin, "prime number races", Amer. Math. Monthly 113 (2006), no. 1, 1-33.)

x	$\pi(x ; 4,3)$	$\pi(x ; 4,1)$
100	13	11
500	50	44
1000	87	80
5000	339	329
10,000	619	609
50,000	2583	2549
100,000	4808	4783

- $\pi(x ; 4,1)>\pi(x ; 4,3)$ for the first time when $x=26,861$.
- $\pi(x ; 4,1)>\pi(x ; 4,3)$ for the first time when $x=26,861$.
- For $x \geq 26,863, \pi(x ; 4,1)>\pi(x ; 4,3)$ occurs for the first time when $x=616,841$, and also at various numbers until 633,798.
- $\pi(x ; 4,1)>\pi(x ; 4,3)$ for the first time when $x=26,861$.
- For $x \geq 26,863, \pi(x ; 4,1)>\pi(x ; 4,3)$ occurs for the first time when $x=616,841$, and also at various numbers until 633,798.
- The first $x>633,798$ for which $\pi(x ; 4,1)>\pi(x ; 4,3)$ is $x=$ 12,306,137.
- $\pi(x ; 4,1)>\pi(x ; 4,3)$ for the first time when $x=26,861$.
- For $x \geq 26,863, \pi(x ; 4,1)>\pi(x ; 4,3)$ occurs for the first time when $x=616,841$, and also at various numbers until 633,798.
- The first $x>633,798$ for which $\pi(x ; 4,1)>\pi(x ; 4,3)$ is $x=$ 12,306,137.

Theorem (Littlewood 1914)

The difference $\pi(x ; 4,1)-\pi(x ; 4,3)$ changes sign for infinitely many integers x.

The race modulo 3

Table: The number of primes of the form $3 n+2$ and $3 n+1$ up to x

x	$\pi(x ; 3,2)$	$\pi(x ; 3,1)$
100	13	11
1000	87	80
10,000	617	611
100,000	4807	4784
$1,000,000$	39,266	39,231

The race modulo 3

Table: The number of primes of the form $3 n+2$ and $3 n+1$ up to x

x	$\pi(x ; 3,2)$	$\pi(x ; 3,1)$
100	13	11
1000	87	80
10,000	617	611
100,000	4807	4784
$1,000,000$	39,266	39,231

Theorem (Littlewood 1914)

$\pi(x ; 3,1)-\pi(x ; 3,2)$ changes sign for infinitely many integers x.

The race modulo 3

Table: The number of primes of the form $3 n+2$ and $3 n+1$ up to x

x	$\pi(x ; 3,2)$	$\pi(x ; 3,1)$
100	13	11
1000	87	80
10,000	617	611
100,000	4807	4784
$1,000,000$	39,266	39,231

Theorem (Littlewood 1914)

$\pi(x ; 3,1)-\pi(x ; 3,2)$ changes sign for infinitely many integers x.
Bays and Hudson (Christmas Day of 1976): $\pi(x ; 3,1)>\pi(x ; 3,2)$ for the first time when $x=608,981,813,029 \approx 6 \times 10^{11}$.

The Shanks-Rényi prime number race problem

- Let $q \geq 3$ and $2 \leq r \leq \varphi(q)$ be positive integers.

The Shanks-Rényi prime number race problem

- Let $q \geq 3$ and $2 \leq r \leq \varphi(q)$ be positive integers.
- Let $a_{1}, a_{2}, \ldots, a_{r}$ be distinct residue classes modulo q which are coprime to q.

The Shanks-Rényi prime number race problem

- Let $q \geq 3$ and $2 \leq r \leq \varphi(q)$ be positive integers.
- Let $a_{1}, a_{2}, \ldots, a_{r}$ be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called " 1 " through " r ", where at time x, the player " j " has a score of $\pi\left(x ; q, a_{j}\right)$.

The Shanks-Rényi prime number race problem

- Let $q \geq 3$ and $2 \leq r \leq \varphi(q)$ be positive integers.
- Let $a_{1}, a_{2}, \ldots, a_{r}$ be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called " 1 " through " r ", where at time x, the player " j " has a score of $\pi\left(x ; q, a_{j}\right)$.

1. Will each of the players take the lead for infinitely many integers x ?

The Shanks-Rényi prime number race problem

- Let $q \geq 3$ and $2 \leq r \leq \varphi(q)$ be positive integers.
- Let $a_{1}, a_{2}, \ldots, a_{r}$ be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called " 1 " through " r ", where at time x, the player " j " has a score of $\pi\left(x ; q, a_{j}\right)$.

1. Will each of the players take the lead for infinitely many integers x ?
2. Will all r ! orderings of the players occur for infinitely many integers x ?

The Shanks-Rényi prime number race problem

- Let $q \geq 3$ and $2 \leq r \leq \varphi(q)$ be positive integers.
- Let $a_{1}, a_{2}, \ldots, a_{r}$ be distinct residue classes modulo q which are coprime to q.
- We consider a game with r players called " 1 " through " r ", where at time x, the player " j " has a score of $\pi\left(x ; q, a_{j}\right)$.

1. Will each of the players take the lead for infinitely many integers x ?
2. Will all r ! orderings of the players occur for infinitely many integers x ?
3. What is the "probability" that a particular ordering $\pi\left(x ; q, a_{1}\right)>\pi\left(x ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$ occurs?

The two-way race

Haselgrove's condition for the modulus q

For all characters χ modulo q we have $L(s, \chi) \neq 0$ for all $s \in(0,1)$.

Theorem (Knapowski and Turán, 1962)

Assume Haselgrove's condition for the modulus q. For any $(a, q)=1$ such that $a \not \equiv 1(\bmod q)$, the quantity $\pi(x ; q, a)-\pi(x ; q, 1)$ changes sign for infinitely many integers x.

The two-way race

Haselgrove's condition for the modulus q

For all characters χ modulo q we have $L(s, \chi) \neq 0$ for all $s \in(0,1)$.

Theorem (Knapowski and Turán, 1962)

Assume Haselgrove's condition for the modulus q. For any $(a, q)=1$ such that $a \not \equiv 1(\bmod q)$, the quantity $\pi(x ; q, a)-\pi(x ; q, 1)$ changes sign for infinitely many integers x.

- Rumely (1993) : Haselgrove's condition is true for all $q \leq 72$.
- Sneed (2009) : Haselgrove's condition is true for all $q \leq 100$.

Theorem (Kátai, 1964)
Assume Haselgrove's condition for the modulus q. If $a \not \equiv b(\bmod q)$ are both squares, or both non-squares modulo q, then $\pi(x ; q, a)-\pi(x ; q, b)$ changes sign for infinitely many integers x.

Theorem (Kátai, 1964)

Assume Haselgrove's condition for the modulus q. If $a \not \equiv b(\bmod q)$ are both squares, or both non-squares modulo q, then $\pi(x ; q, a)-\pi(x ; q, b)$ changes sign for infinitely many integers x.

Theorem (Sneed, 2009)

For all $q \leq 100$ and all $(a b, q)=1, \pi(x ; q, a)-\pi(x ; q, b)$ changes sign for infinitely many integers x.

Races with 3 or more competitors

Theorem (Kaczorowski, 1993)

Assume GRH. Let $q \geq 3$. There exist infinitely many integers x such that

$$
\pi(x ; q, 1)>\max _{a \neq 1 \bmod q} \pi(x ; q, a)
$$

The same is true for $\pi(x ; q, 1)<\min _{a \neq 1 \bmod q} \pi(x ; q, a)$.

Races with 3 or more competitors

Theorem (Kaczorowski, 1993)

Assume GRH. Let $q \geq 3$. There exist infinitely many integers x such that

$$
\pi(x ; q, 1)>\max _{a \neq 1 \bmod q} \pi(x ; q, a)
$$

The same is true for $\pi(x ; q, 1)<\min _{a \neq 1 \bmod q} \pi(x ; q, a)$.

Theorem (Kaczorowski, 1996)

- Assume GRH. For each $q \geq 5, q \neq 6$ one can construct an explicit $\varphi(q)$-race such that $\pi(x ; q, 1)>\pi\left(x ; q, b_{2}\right) \cdots>\pi\left(x ; q, b_{\varphi(q)}\right)$ holds for infinitely many integers x.

Races with 3 or more competitors

Theorem (Kaczorowski, 1993)

Assume GRH. Let $q \geq 3$. There exist infinitely many integers x such that

$$
\pi(x ; q, 1)>\max _{a \neq 1 \bmod q} \pi(x ; q, a) .
$$

The same is true for $\pi(x ; q, 1)<\min _{a \neq 1 \bmod q} \pi(x ; q, a)$.

Theorem (Kaczorowski, 1996)

- Assume GRH. For each $q \geq 5, q \neq 6$ one can construct an explicit $\varphi(q)$-race such that $\pi(x ; q, 1)>\pi\left(x ; q, b_{2}\right) \cdots>\pi\left(x ; q, b_{\varphi(q)}\right)$ holds for infinitely many integers x. The same is true for a certain ordering $\pi(x ; q, 1)<\pi\left(x ; q, a_{2}\right) \cdots<\pi\left(x ; q, a_{\varphi(q)}\right)$.

Races with 3 or more competitors

Theorem (Kaczorowski, 1993)

Assume GRH. Let $q \geq 3$. There exist infinitely many integers x such that

$$
\pi(x ; q, 1)>\max _{a \neq 1 \bmod q} \pi(x ; q, a)
$$

The same is true for $\pi(x ; q, 1)<\min _{a \neq 1 \bmod q} \pi(x ; q, a)$.

Theorem (Kaczorowski, 1996)

- Assume GRH. For each $q \geq 5, q \neq 6$ one can construct an explicit $\varphi(q)$-race such that $\pi(x ; q, 1)>\pi\left(x ; q, b_{2}\right) \cdots>\pi\left(x ; q, b_{\varphi(q)}\right)$ holds for infinitely many integers x. The same is true for a certain ordering $\pi(x ; q, 1)<\pi\left(x ; q, a_{2}\right) \cdots<\pi\left(x ; q, a_{\varphi(q)}\right)$.
- For example
$\pi(x ; 7,1)>\pi(x ; 7,5)>\pi(x ; 7,6)>\pi(x ; 7,3)>\pi(x ; 7,4)>\pi(x ; 7,2)$ holds for infinitely many integers x.

Barriers : The work of Ford and Konyagin

Theorem (Ford and Konyagin, 2002)
Let $q \geq 5$ and a_{1}, a_{2}, a_{3} be distinct residue classes $\bmod q$ that are coprime to q. Let τ be arbitrarily large.

Barriers : The work of Ford and Konyagin

Theorem (Ford and Konyagin, 2002)

Let $q \geq 5$ and a_{1}, a_{2}, a_{3} be distinct residue classes $\bmod q$ that are coprime to q. Let τ be arbitrarily large. There exists a finite set $\mathcal{B}=\{\sigma+$ it : $1 / 2<\sigma \leq 1$ and $t \geq \tau\}$ (called a barrier), such that if certain L-functions $L(s, \chi)$ with χ mod q have zeros (with certain multiplicities) in \mathcal{B} then one of the 6 orderings of the functions $\pi\left(x ; q, a_{1}\right), \pi\left(x ; q, a_{2}\right), \pi\left(x ; q, a_{3}\right)$ does not hold for large x.

Barriers : The work of Ford and Konyagin

Theorem (Ford and Konyagin, 2002)

Let $q \geq 5$ and a_{1}, a_{2}, a_{3} be distinct residue classes $\bmod q$ that are coprime to q. Let τ be arbitrarily large. There exists a finite set $\mathcal{B}=\{\sigma+i t: 1 / 2<\sigma \leq 1$ and $t \geq \tau\}$ (called a barrier), such that if certain L-functions $L(s, \chi)$ with $\chi \bmod q$ have zeros (with certain multiplicities) in \mathcal{B} then one of the 6 orderings of the functions $\pi\left(x ; q, a_{1}\right), \pi\left(x ; q, a_{2}\right), \pi\left(x ; q, a_{3}\right)$ does not hold for large x.

Theorem (Ford and Konyagin, 2003)

Fix $q \geq 5$ and an arbitrarily large τ. Let $4 \leq r \leq \varphi(q)$ and a_{1}, \ldots, a_{r} be distinct residue classes $\bmod q$ that are coprime to q. There exists a finite set $\mathcal{B}=\{\sigma+i t: 1 / 2<\sigma \leq 1$ and $t \geq \tau\}$, such that if certain L-functions $L(s, \chi)$ with $\chi \bmod q$ have zeros (with certain multiplicities) in \mathcal{B} then at most $r(r-1)$ of the r ! orderings of the functions $\pi\left(x ; q, a_{1}\right), \pi\left(x ; q, a_{2}\right), \ldots, \pi\left(x ; q, a_{r}\right)$ occur for large x.

Densities in the prime number race problem

Conjecture (Knapowski-Turàn 1962)

As $X \rightarrow \infty$, the percentage of integers $x \leq X$ for which $\pi(x ; 4,1)>\pi(x ; 4,3)$ goes to to 0%.

Densities in the prime number race problem

Conjecture (Knapowski-Turàn 1962)

As $X \rightarrow \infty$, the percentage of integers $x \leq X$ for which $\pi(x ; 4,1)>\pi(x ; 4,3)$ goes to to 0%.

The following table gives, for X in various ranges, the maximum percentage of values of $x \leq X$ for which $\pi(x ; 4,1)>\pi(x ; 4,3)$:

Table:

For X in the range	Maximum percentage of such $x \leq X$
$0-10^{7}$	2.6%
$10^{7}-10^{8}$	0.6%
$10^{7}-10^{8}$	0.6%
$10^{8}-10^{9}$	0.1%
$10^{9}-10^{10}$	1.6%
$10^{10}-10^{11}$	2.8%

Theorem (Kaczorowski 1993)
 If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Kaczorowski 1993)

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B}=\{\sigma+i t: 0 \leq \sigma \leq 1$ and $\sigma \neq 1 / 2\}$ such that if $L\left(s, \chi_{1}\right)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_{1} is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

Theorem (Kaczorowski 1993)

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B}=\{\sigma+i t: 0 \leq \sigma \leq 1$ and $\sigma \neq 1 / 2\}$ such that if $L\left(s, \chi_{1}\right)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_{1} is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

- The hypothetical zeros of $L\left(s, \chi_{1}\right)$ can be chosen with arbitrarily large imaginary parts.

Theorem (Kaczorowski 1993)

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B}=\{\sigma+i t: 0 \leq \sigma \leq 1$ and $\sigma \neq 1 / 2\}$ such that if $L\left(s, \chi_{1}\right)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_{1} is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

- The hypothetical zeros of $L\left(s, \chi_{1}\right)$ can be chosen with arbitrarily large imaginary parts.
- They can be arbitrarily close to the critical line $\operatorname{Re}(s)=1 / 2$.

Theorem (Kaczorowski 1993)

If the Generalized Riemann Hypothesis GRH is true, then the Knapowski-Turàn Conjecture is false.

Theorem (Ford, Konyagin and L. 2013)

We can construct a set $\mathcal{B}=\{\sigma+i t: 0 \leq \sigma \leq 1$ and $\sigma \neq 1 / 2\}$ such that if $L\left(s, \chi_{1}\right)$ has zeros (with certain multiplicities) in \mathcal{B} (where χ_{1} is the non-principal character modulo 4), then the Knapowski-Turàn Conjecture is true!

- The hypothetical zeros of $L\left(s, \chi_{1}\right)$ can be chosen with arbitrarily large imaginary parts.
- They can be arbitrarily close to the critical line $\operatorname{Re}(s)=1 / 2$.
- \mathcal{B} is a very "thin" set. Indeed, our construction involves $O\left((\log T)^{5 / 4}\right)$ zeros (counted with multiplicity) with imaginary part less than T.

Theorem (Kaczorowski 1993)

Assume GRH. For any $(a, q)=1$ such that $a \not \equiv 1 \bmod q$, the set of positive integers x for which $\pi(x ; q, 1)>\pi(x ; q, a)$ has a positive lower density.

Theorem (Kaczorowski 1993)

Assume GRH. For any $(a, q)=1$ such that $a \not \equiv 1 \bmod q$, the set of positive integers x for which $\pi(x ; q, 1)>\pi(x ; q, a)$ has a positive lower density.

Theorem (Ford, Konyagin and L. 2013)

Let a, b be distinct reduced residue classes modulo q. We can construct a set $\mathcal{B}=\{\sigma+$ it : $0 \leq \sigma \leq 1$ and $\sigma \neq 1 / 2\}$ such that if a certain $L(s, \chi)$ has zeros (with certain multiplicities) in \mathcal{B}, then the percentage of integers $x \leq X$ for which $\pi(x ; q, a)>\pi(x ; q, b)$ goes to 0%.

Chebyshev's Bias

Chebyshev's Bias

There seem to be "more" primes of the form $q n+a$ than of the form $q n+b$ if a is non-square and b is a square modulo q.

Chebyshev's Bias

Chebyshev's Bias

There seem to be "more" primes of the form $q n+a$ than of the form $q n+b$ if a is non-square and b is a square modulo q.

Table: The number of primes of the form $10 n+j$ up to x

x	Last Digit 1	Last Digit 3	Last Digit 7	Last Digit 9
1000	40	42	46	38
10,000	306	310	308	303
100,000	2387	2402	2411	2390
$1,000,000$	19,617	19,665	19,621	19,593

Table: The number of primes of the form $8 n+j$ up to x

x	$\pi(x ; 8,1)$	$\pi(x ; 8,3)$	$\pi(x ; 8,5)$	$\pi(x ; 8,7)$
1000	37	44	43	43
10,000	295	311	314	308
100,000	2384	2409	2399	2399
$1,000,000$	19,552	19,653	19,623	19,669

Measuring the bias: the work of Rubinstein-Sarnak

Theorem (Kaczorowski 1993)

Assume the Generalized Riemann Hypothesis. The quantity

$$
\left.\frac{1}{X} \right\rvert\,\{x \leq X: \pi(x ; 4,3)>\pi(x ; 4,1)\}
$$

does not tend to any limit as $X \rightarrow \infty$.

Measuring the bias: the work of Rubinstein-Sarnak

Theorem (Kaczorowski 1993)

Assume the Generalized Riemann Hypothesis. The quantity

$$
\left.\frac{1}{X} \right\rvert\,\{x \leq X: \pi(x ; 4,3)>\pi(x ; 4,1)\}
$$

does not tend to any limit as $X \rightarrow \infty$.
Rubinstein and Sarnak (1994)

- The natural density is not the correct way to measure the bias!

Measuring the bias: the work of Rubinstein-Sarnak

Theorem (Kaczorowski 1993)

Assume the Generalized Riemann Hypothesis. The quantity

$$
\left.\frac{1}{X} \right\rvert\,\{x \leq X: \pi(x ; 4,3)>\pi(x ; 4,1)\}
$$

does not tend to any limit as $X \rightarrow \infty$.
Rubinstein and Sarnak (1994)

- The natural density is not the correct way to measure the bias!
- The adequate measure to use is the logarithmic measure.

Measuring the bias: the work of Rubinstein-Sarnak

Theorem (Kaczorowski 1993)

Assume the Generalized Riemann Hypothesis. The quantity

$$
\left.\frac{1}{X} \right\rvert\,\{x \leq X: \pi(x ; 4,3)>\pi(x ; 4,1)\}
$$

does not tend to any limit as $X \rightarrow \infty$.
Rubinstein and Sarnak (1994)

- The natural density is not the correct way to measure the bias!
- The adequate measure to use is the logarithmic measure.
- Need to use the Generalized Riemann Hypothesis and the Linear Independence Conjecture LI, which is the assumption that the positive imaginary parts of the zeros of the associated Dirichlet L-functions are linearly independent over the rational numbers.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. As $X \rightarrow \infty$,

$$
\frac{1}{\log X} \sum_{\substack{x \leq X \\ \pi(x ; 4,3)>\pi(x ; 4,1)}} \frac{1}{x} \rightarrow 0.9959 \ldots
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. As $X \rightarrow \infty$,

$$
\frac{1}{\log X} \sum_{\substack{x \leq X \\ \pi(x ; 4,3)>\pi(x ; 4,1)}} \frac{1}{x} \rightarrow 0.9959 \ldots
$$

Chebyshev was correct 99.59\% of the time!

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. As $X \rightarrow \infty$,

$$
\frac{1}{\log X} \sum_{\substack{x \leq X \\ \pi(x ; 4,3)>\pi(x ; 4,1)}} \frac{1}{x} \rightarrow 0.9959 \ldots
$$

Chebyshev was correct 99.59\% of the time!

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Let a, b be distinct reduced residue classes modulo q. The logarithmic density

$$
\delta(q ; a, b):=\lim _{X \rightarrow \infty} \frac{1}{\log X} \int_{\substack{t \in[2, X] \\ \pi(t ; q, a)>\pi(t ; q, b)}} \frac{d t}{t},
$$

exists and is positive.
$\delta(q ; a, b)$ is "the probability" that $\pi(x ; q, a)>\pi(x ; q, b)$.
$\delta(q ; a, b)$ is "the probability" that $\pi(x ; q, a)>\pi(x ; q, b)$.

Theorem (Rubinstein-Sarnak, 1994)

Assume GRH and LI.

- $\delta(q ; a, b)=\frac{1}{2}$ if a and b are both squares or both non-squares modulo q.
$\delta(q ; a, b)$ is "the probability" that $\pi(x ; q, a)>\pi(x ; q, b)$.

Theorem (Rubinstein-Sarnak, 1994)

Assume GRH and LI.

- $\delta(q ; a, b)=\frac{1}{2}$ if a and b are both squares or both non-squares modulo q.
- Chebyshev's bias: $\delta(q ; a, b)>1 / 2$ if a is a non-square and b is a square modulo q.
$\delta(q ; a, b)$ is "the probability" that $\pi(x ; q, a)>\pi(x ; q, b)$.

Theorem (Rubinstein-Sarnak, 1994)

Assume GRH and LI.

- $\delta(q ; a, b)=\frac{1}{2}$ if a and b are both squares or both non-squares modulo q.
- Chebyshev's bias: $\delta(q ; a, b)>1 / 2$ if a is a non-square and b is a square modulo q.
- $\delta(4 ; 3,1)=0.9959 \ldots$ and $\delta(3 ; 2,1)=0.9990 \ldots$.
- Let $2 \leq r \leq \varphi(q)$ and a_{1}, \ldots, a_{r} be distinct residue classes modulo q which are coprime to q.
- Let $P\left(q ; a_{1}, \ldots, a_{r}\right)$ be the set of positive integer x such that

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(a ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{r}\right)
$$

- Let $2 \leq r \leq \varphi(q)$ and a_{1}, \ldots, a_{r} be distinct residue classes modulo q which are coprime to q.
- Let $P\left(q ; a_{1}, \ldots, a_{r}\right)$ be the set of positive integer x such that

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(a ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{r}\right)
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. The logarithmic density of $P\left(q ; a_{1}, \ldots, a_{r}\right)$ defined by

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right):=\lim _{X \rightarrow \infty} \frac{1}{\log X} \int_{t \in P\left(q ; a_{1}, \ldots, a_{r}\right) \cap[2, X]} \frac{d t}{t},
$$

exists and is positive.

- Let $2 \leq r \leq \varphi(q)$ and a_{1}, \ldots, a_{r} be distinct residue classes modulo q which are coprime to q.
- Let $P\left(q ; a_{1}, \ldots, a_{r}\right)$ be the set of positive integer x such that

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(a ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{r}\right) .
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. The logarithmic density of $P\left(q ; a_{1}, \ldots, a_{r}\right)$ defined by

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right):=\lim _{X \rightarrow \infty} \frac{1}{\log X} \int_{t \in P\left(q ; a_{1}, \ldots, a_{r}\right) \cap[2, X]} \frac{d t}{t},
$$

exists and is positive.
$\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ is the "probability" that $\pi\left(x ; q, a_{1}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$.
$\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ is the "probability" that $\pi\left(x ; q, a_{1}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$.

- The race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is said to be unbiased if for every permutation σ of the set $\{1,2, \ldots, r\}$ we have

$$
\delta\left(q ; a_{\sigma(1)}, \ldots, a_{\sigma(r)}\right)=\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}
$$

$\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ is the "probability" that $\pi\left(x ; q, a_{1}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$.

- The race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is said to be unbiased if for every permutation σ of the set $\{1,2, \ldots, r\}$ we have

$$
\delta\left(q ; a_{\sigma(1)}, \ldots, a_{\sigma(r)}\right)=\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

- A two-way prime number race $\left\{q ; a_{1}, a_{2}\right\}$ is unbiased if and only if a_{1}, a_{2} are both squares or both non-squares modulo q.
$\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ is the "probability" that $\pi\left(x ; q, a_{1}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$.
- The race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is said to be unbiased if for every permutation σ of the set $\{1,2, \ldots, r\}$ we have

$$
\delta\left(q ; a_{\sigma(1)}, \ldots, a_{\sigma(r)}\right)=\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

- A two-way prime number race $\left\{q ; a_{1}, a_{2}\right\}$ is unbiased if and only if a_{1}, a_{2} are both squares or both non-squares modulo q.
- If $r=3$ and a_{1}, a_{2}, a_{3} verify $a_{2} \equiv \rho a_{1} \bmod q$ and $a_{3} \equiv \rho a_{2} \bmod q$ where $\rho^{3} \equiv 1 \bmod q$, then the race $\left\{q ; a_{1}, a_{2}, a_{3}\right\}$ is unbiased.
$\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ is the "probability" that $\pi\left(x ; q, a_{1}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$.
- The race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is said to be unbiased if for every permutation σ of the set $\{1,2, \ldots, r\}$ we have

$$
\delta\left(q ; a_{\sigma(1)}, \ldots, a_{\sigma(r)}\right)=\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

- A two-way prime number race $\left\{q ; a_{1}, a_{2}\right\}$ is unbiased if and only if a_{1}, a_{2} are both squares or both non-squares modulo q.
- If $r=3$ and a_{1}, a_{2}, a_{3} verify $a_{2} \equiv \rho a_{1} \bmod q$ and $a_{3} \equiv \rho a_{2} \bmod q$ where $\rho^{3} \equiv 1 \bmod q$, then the race $\left\{q ; a_{1}, a_{2}, a_{3}\right\}$ is unbiased.

If a race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is unbiased, then all the a_{i} must be either squares or either non-squares modulo q.
$\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ is the "probability" that $\pi\left(x ; q, a_{1}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$.

- The race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is said to be unbiased if for every permutation σ of the set $\{1,2, \ldots, r\}$ we have

$$
\delta\left(q ; a_{\sigma(1)}, \ldots, a_{\sigma(r)}\right)=\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!} .
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI.

- A two-way prime number race $\left\{q ; a_{1}, a_{2}\right\}$ is unbiased if and only if a_{1}, a_{2} are both squares or both non-squares modulo q.
- If $r=3$ and a_{1}, a_{2}, a_{3} verify $a_{2} \equiv \rho a_{1} \bmod q$ and $a_{3} \equiv \rho a_{2} \bmod q$ where $\rho^{3} \equiv 1 \bmod q$, then the race $\left\{q ; a_{1}, a_{2}, a_{3}\right\}$ is unbiased.

If a race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is unbiased, then all the a_{i} must be either squares or either non-squares modulo q.

- Guess: If a_{1}, \ldots, a_{r} are all squares or all non-squares modulo q, then the race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is unbiased.
- Feuerverger and Martin (2000): Our guess is wrong!

Theorem (Feuerverger and Martin, 2000)

Assume GRH and LI. The races $\{8 ; 3,5,7\}$ and $\{12 ; 5,7,11\}$ are biased.

- Feuerverger and Martin (2000): Our guess is wrong!

Theorem (Feuerverger and Martin, 2000)

Assume GRH and LI. The races $\{8 ; 3,5,7\}$ and $\{12 ; 5,7,11\}$ are biased.

- All the densities $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ they computed are such that $r \leq 4$ and $q \leq 12$.
- It is difficult to compute these densities, since we need to use many zeros of Dirichlet L-functions!
- Feuerverger and Martin (2000): Our guess is wrong!

Theorem (Feuerverger and Martin, 2000)

Assume GRH and LI. The races $\{8 ; 3,5,7\}$ and $\{12 ; 5,7,11\}$ are biased.

- All the densities $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ they computed are such that $r \leq 4$ and $q \leq 12$.
- It is difficult to compute these densities, since we need to use many zeros of Dirichlet L-functions!

Theorem (L, 2013)

Assume GRH and LI. Fix $r \geq 3$. There exists a constant $q_{0}(r)$ such that if $q \geq q_{0}(r)$ then

- There exist distinct residue classes $a_{1}, \ldots, a_{r} \bmod q$, with $\left(a_{i}, q\right)=1$, a_{1}, \ldots, a_{r} are squares modulo q and the race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is biased.
- Feuerverger and Martin (2000): Our guess is wrong!

Theorem (Feuerverger and Martin, 2000)

Assume GRH and LI. The races $\{8 ; 3,5,7\}$ and $\{12 ; 5,7,11\}$ are biased.

- All the densities $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ they computed are such that $r \leq 4$ and $q \leq 12$.
- It is difficult to compute these densities, since we need to use many zeros of Dirichlet L-functions!

Theorem (L, 2013)

Assume GRH and LI. Fix $r \geq 3$. There exists a constant $q_{0}(r)$ such that if $q \geq q_{0}(r)$ then

- There exist distinct residue classes $a_{1}, \ldots, a_{r} \bmod q$, with $\left(a_{i}, q\right)=1$, a_{1}, \ldots, a_{r} are squares modulo q and the race $\left\{q ; a_{1}, \ldots, a_{r}\right\}$ is biased.
- There exist distinct residue classes $b_{1}, \ldots, b_{r} \bmod q$, with $\left(b_{i}, q\right)=1$, b_{1}, \ldots, b_{r} are non-squares $\bmod q$ and the race $\left\{q ; b_{1}, \ldots, b_{r}\right\}$ is biased.

The size of $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ when r is fixed and q is large

$$
\begin{aligned}
\delta(4 ; 3,1) & =0.9959 \ldots(\text { Rubinstein-Sarnak, 1994 }) \\
\delta(420 ; 17,1) & =0.7956 \ldots(\text { Fiorilli-Martin, 2009 }) \\
\delta(997 ; 11,1) & =0.5082 \ldots(\text { Fiorilli-Martin, 2009 })
\end{aligned}
$$

The size of $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ when r is fixed and q is large

$$
\begin{aligned}
\delta(4 ; 3,1) & =0.9959 \ldots(\text { Rubinstein-Sarnak, 1994 }) \\
\delta(420 ; 17,1) & =0.7956 \ldots(\text { Fiorilli-Martin, 2009 }) \\
\delta(997 ; 11,1) & =0.5082 \ldots(\text { Fiorilli-Martin, 2009 })
\end{aligned}
$$

The bias towards non-squares becomes "less pronounced" when q grows.

The size of $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ when r is fixed and q is large

$$
\begin{aligned}
\delta(4 ; 3,1) & =0.9959 \ldots(\text { Rubinstein-Sarnak, 1994 }) \\
\delta(420 ; 17,1) & =0.7956 \ldots(\text { Fiorilli-Martin, 2009 }) \\
\delta(997 ; 11,1) & =0.5082 \ldots(\text { Fiorilli-Martin, 2009 })
\end{aligned}
$$

The bias towards non-squares becomes "less pronounced" when q grows.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. We have

$$
\max _{a_{1}, a_{2} \bmod q}\left|\delta\left(q ; a_{1}, a_{2}\right)-\frac{1}{2}\right| \rightarrow 0 \text { as } q \rightarrow \infty .
$$

The size of $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ when r is fixed and q is large

$$
\begin{aligned}
\delta(4 ; 3,1) & =0.9959 \ldots(\text { Rubinstein-Sarnak, 1994 }) \\
\delta(420 ; 17,1) & =0.7956 \ldots(\text { Fiorilli-Martin, 2009 }) \\
\delta(997 ; 11,1) & =0.5082 \ldots(\text { Fiorilli-Martin, 2009 })
\end{aligned}
$$

The bias towards non-squares becomes "less pronounced" when q grows.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. We have

$$
\max _{a_{1}, a_{2} \bmod q}\left|\delta\left(q ; a_{1}, a_{2}\right)-\frac{1}{2}\right| \rightarrow 0 \text { as } q \rightarrow \infty .
$$

More generally if $r \geq 2$ is fixed, then

$$
\max _{a_{1}, a_{2}, \ldots, a_{r} \bmod q}\left|\delta\left(q ; a_{1}, \ldots, a_{r}\right)-\frac{1}{r!}\right| \rightarrow 0 \text { as } q \rightarrow \infty .
$$

Let

$$
\Delta_{r}(q):=\max _{a_{1}, a_{2}, \ldots, a_{r} \bmod q}\left|\delta\left(q ; a_{1}, \ldots, a_{r}\right)-\frac{1}{r!}\right| .
$$

Let

$$
\Delta_{r}(q):=\max _{a_{1}, a_{2}, \ldots, a_{r} \bmod q}\left|\delta\left(q ; a_{1}, \ldots, a_{r}\right)-\frac{1}{r!}\right| .
$$

Theorem (Fiorilli and Martin, 2009)

Assume GRH and LI. We have

$$
\Delta_{2}(q) \sim \frac{\rho(q)}{2 \sqrt{\pi \varphi(q) \log q}}=\frac{1}{q^{1 / 2+o(1)}}
$$

where $\rho(q)$ is the number of solutions of $t^{2} \equiv 1 \bmod q$, and $o(1)$ is a quantity which goes to 0 as $q \rightarrow \infty$.

Let

$$
\Delta_{r}(q):=\max _{a_{1}, a_{2}, \ldots, a_{r} \bmod q}\left|\delta\left(q ; a_{1}, \ldots, a_{r}\right)-\frac{1}{r!}\right| .
$$

Theorem (Fiorilli and Martin, 2009)

Assume GRH and LI. We have

$$
\Delta_{2}(q) \sim \frac{\rho(q)}{2 \sqrt{\pi \varphi(q) \log q}}=\frac{1}{q^{1 / 2+o(1)}},
$$

where $\rho(q)$ is the number of solutions of $t^{2} \equiv 1 \bmod q$, and $o(1)$ is a quantity which goes to 0 as $q \rightarrow \infty$.

Theorem (L, 2013)

Assume GRH and LI. Let $r \geq 3$ be a fixed integer. There exist positive constants $c_{1}(r), c_{2}(r)$ and a positive integer q_{0} such that, if $q \geq q_{0}$ then

$$
\frac{c_{1}(r)}{\log q} \leq \Delta_{r}(q) \leq \frac{c_{2}(r)}{\log q}
$$

The random verctor associated to a prime number race

- For a non-principal Dirichlet character $\chi \neq \chi_{0}$, let $\left\{1 / 2+i \gamma_{\chi}\right\}$ be the sequence of non-trivial zeros of the Dirichlet L-function $L(s, \chi)$, and let $S_{q}=\cup_{\chi \neq \chi_{0} \bmod q}\left\{\gamma_{\chi}: \gamma_{\chi}>0\right\}$.

The random verctor associated to a prime number race

- For a non-principal Dirichlet character $\chi \neq \chi_{0}$, let $\left\{1 / 2+i \gamma_{\chi}\right\}$ be the sequence of non-trivial zeros of the Dirichlet L-function $L(s, \chi)$, and let $S_{q}=\cup_{\chi \neq \chi_{0} \bmod q}\left\{\gamma_{\chi}: \gamma_{\chi}>0\right\}$.
- Let $\left\{\boldsymbol{U}\left(\gamma_{\chi}\right)\right\}_{\gamma_{\chi} \in S_{q}}$ be a sequence of independent random variables uniformly distributed on the unit circle $\mathbb{U}=\{z \in \mathbb{C}:|z|=1\}$.

The random verctor associated to a prime number race

- For a non-principal Dirichlet character $\chi \neq \chi_{0}$, let $\left\{1 / 2+i \gamma_{\chi}\right\}$ be the sequence of non-trivial zeros of the Dirichlet L-function $L(s, \chi)$, and let $S_{q}=\cup_{\chi \neq \chi_{0} \bmod q}\left\{\gamma_{\chi}: \gamma_{\chi}>0\right\}$.
- Let $\left\{\boldsymbol{U}\left(\gamma_{\chi}\right)\right\}_{\gamma_{\chi} \in S_{q}}$ be a sequence of independent random variables uniformly distributed on the unit circle $\mathbb{U}=\{z \in \mathbb{C}:|z|=1\}$.
- We consider the random variables

$$
X(q, a)=-c_{q}(a)+\sum_{\substack{\chi \neq \chi_{0} \\ \chi \bmod q}} \sum_{\gamma_{\chi}>0} \frac{2 \operatorname{Re}\left(\chi(a) U\left(\gamma_{\chi}\right)\right)}{\sqrt{\frac{1}{4}+\gamma_{\chi}^{2}}}
$$

where

$$
c_{q}(a):=-1+\mid\left\{b \bmod q: b^{2} \equiv \operatorname{a\operatorname {mod}q\} |=q^{o(1)}..~}\right.
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Then we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\mathbb{P}\left(X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\cdots>X\left(q, a_{r}\right)\right) .
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Then we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\mathbb{P}\left(X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\cdots>X\left(q, a_{r}\right)\right) .
$$

- The mean vector of $\left(X\left(q, a_{1}\right), X\left(q, a_{2}\right), \ldots,>X\left(q, a_{r}\right)\right)$ equals $\left(-c_{q}\left(a_{1}\right), \ldots,-c_{q}\left(a_{r}\right)\right)$ and is responsible for Chebyshev's Bias (if $r=2)$.

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Then we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\mathbb{P}\left(X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\cdots>X\left(q, a_{r}\right)\right) .
$$

- The mean vector of $\left(X\left(q, a_{1}\right), X\left(q, a_{2}\right), \ldots,>X\left(q, a_{r}\right)\right)$ equals $\left(-c_{q}\left(a_{1}\right), \ldots,-c_{q}\left(a_{r}\right)\right)$ and is responsible for Chebyshev's Bias (if $r=2$).
- The covariance matrix of $\left(X\left(q, a_{1}\right), X\left(q, a_{2}\right), \ldots,>X\left(q, a_{r}\right)\right)$, noted $\operatorname{Cov}_{q ; a_{1}, \ldots, a_{r}}(j, k)$ satisfies

$$
\operatorname{Cov}_{q ; a_{1}, \ldots, a_{r}}(j, k) \begin{cases}\sim \varphi(q) \log q & \text { if } j=k \\ =O(\varphi(q)) & \text { if } j \neq k\end{cases}
$$

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Then we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\mathbb{P}\left(X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\cdots>X\left(q, a_{r}\right)\right) .
$$

- The mean vector of $\left(X\left(q, a_{1}\right), X\left(q, a_{2}\right), \ldots,>X\left(q, a_{r}\right)\right)$ equals $\left(-c_{q}\left(a_{1}\right), \ldots,-c_{q}\left(a_{r}\right)\right)$ and is responsible for Chebyshev's Bias (if $r=2$).
- The covariance matrix of $\left(X\left(q, a_{1}\right), X\left(q, a_{2}\right), \ldots,>X\left(q, a_{r}\right)\right)$, noted $\operatorname{Cov}_{q ; a_{1}, \ldots, a_{r}}(j, k)$ satisfies

$$
\operatorname{Cov}_{q ; a_{1}, \ldots, a_{r}}(j, k) \begin{cases}\sim \varphi(q) \log q & \text { if } j=k \\ =O(\varphi(q)) & \text { if } j \neq k\end{cases}
$$

- The random variables $X(q, a)$ are weakly correlated,

Theorem (Rubinstein and Sarnak, 1994)

Assume GRH and LI. Then we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\mathbb{P}\left(X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\cdots>X\left(q, a_{r}\right)\right) .
$$

- The mean vector of $\left(X\left(q, a_{1}\right), X\left(q, a_{2}\right), \ldots,>X\left(q, a_{r}\right)\right)$ equals $\left(-c_{q}\left(a_{1}\right), \ldots,-c_{q}\left(a_{r}\right)\right)$ and is responsible for Chebyshev's Bias (if $r=2$).
- The covariance matrix of $\left(X\left(q, a_{1}\right), X\left(q, a_{2}\right), \ldots,>X\left(q, a_{r}\right)\right)$, noted $\operatorname{Cov}_{q ; a_{1}, \ldots, a_{r}}(j, k)$ satisfies

$$
\operatorname{Cov}_{q ; a_{1}, \ldots, a_{r}}(j, k) \begin{cases}\sim \varphi(q) \log q & \text { if } j=k \\ =O(\varphi(q)) & \text { if } j \neq k\end{cases}
$$

- The random variables $X(q, a)$ are weakly correlated, and their correlations govern the behavior of $\Delta_{r}(q)$ for $r \geq 3$.

The size of $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ when $r \rightarrow \infty$ as $q \rightarrow \infty$

Conjecture (Feuerverger-Martin, 2000)

There exist a function $r_{0}(q)$ with $r_{0}(q) \rightarrow \infty$ as $q \rightarrow \infty$, such that for any integer $r \leq r_{0}(q)$ we have

$$
\lim _{q \rightarrow \infty} \max _{a_{1}, \ldots, a_{r} \bmod q}\left|r!\delta\left(q ; a_{1}, \ldots, a_{r}\right)-1\right|=0
$$

The size of $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ when $r \rightarrow \infty$ as $q \rightarrow \infty$

Conjecture (Feuerverger-Martin, 2000)

There exist a function $r_{0}(q)$ with $r_{0}(q) \rightarrow \infty$ as $q \rightarrow \infty$, such that for any integer $r \leq r_{0}(q)$ we have

$$
\lim _{q \rightarrow \infty} \max _{a_{1}, \ldots, a_{r} \bmod q}\left|r!\delta\left(q ; a_{1}, \ldots, a_{r}\right)-1\right|=0
$$

Theorem (L, 2012)

- The Feuerverger-Martin is true under GRH and LI.

The size of $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$ when $r \rightarrow \infty$ as $q \rightarrow \infty$

Conjecture (Feuerverger-Martin, 2000)

There exist a function $r_{0}(q)$ with $r_{0}(q) \rightarrow \infty$ as $q \rightarrow \infty$, such that for any integer $r \leq r_{0}(q)$ we have

$$
\lim _{q \rightarrow \infty} \max _{a_{1}, \ldots, a_{r} \bmod q}\left|r!\delta\left(q ; a_{1}, \ldots, a_{r}\right)-1\right|=0
$$

Theorem (L, 2012)

- The Feuerverger-Martin is true under GRH and LI.
- Assume GRH and LI. For any integer r such that $2 \leq r \leq \sqrt{\log q}$ we have uniformly for all r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct reduced residue classes modulo q

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}\left(1+O\left(\frac{r^{2}}{\log q}\right)\right) .
$$

A transition in the behavior of the densities $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$

Conjecture (Ford and L., 2011)

1. If $2 \leq r \leq(\log q)^{1-\varepsilon}$, then uniformly for all r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct reduced residue classes modulo q we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right) \sim \frac{1}{r!}
$$

as $q \rightarrow \infty$.

A transition in the behavior of the densities $\delta\left(q ; a_{1}, \ldots, a_{r}\right)$

Conjecture (Ford and L., 2011)

1. If $2 \leq r \leq(\log q)^{1-\varepsilon}$, then uniformly for all r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct reduced residue classes modulo q we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right) \sim \frac{1}{r!}
$$

as $q \rightarrow \infty$.
2. If $(\log q)^{1+\varepsilon} \leq r \leq \varphi(q)$, then there exist r-tuples
$\left(a_{1}, \ldots, a_{r}\right),\left(b_{1}, \ldots, b_{r}\right)$ for which we have as $q \rightarrow \infty$

$$
r!\cdot \delta\left(q ; a_{1}, \ldots, a_{r}\right) \rightarrow 0
$$

and

$$
r!\cdot \delta\left(q ; b_{1}, \ldots, b_{r}\right) \rightarrow \infty
$$

Theorem (Harper and L., 2018)

- Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.

Theorem (Harper and L., 2018)

- Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.
- Assume GRH and LI. Let $2 \leq r \leq \log q /(\log \log q)^{4}$ be a positive integer. Then, uniformly for all r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct reduced residue classes modulo q we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}\left(1+O\left(\frac{r(\log r)^{4}}{\log q}\right)\right) .
$$

Theorem (Harper and L., 2018)

- Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.
- Assume GRH and LI. Let $2 \leq r \leq \log q /(\log \log q)^{4}$ be a positive integer. Then, uniformly for all r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct reduced residue classes modulo q we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}\left(1+O\left(\frac{r(\log r)^{4}}{\log q}\right)\right) .
$$

The main ingredient of the proof is a harmonic analysis estimate related to the Hardy-Littlewood circle method, and inspired by work of Bourgain.

Theorem (Harper and L., 2018)

- Part 1 of the Ford-Lamzouri Conjecture is true under GRH and LI.
- Assume GRH and LI. Let $2 \leq r \leq \log q /(\log \log q)^{4}$ be a positive integer. Then, uniformly for all r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of distinct reduced residue classes modulo q we have

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right)=\frac{1}{r!}\left(1+O\left(\frac{r(\log r)^{4}}{\log q}\right)\right) .
$$

The main ingredient of the proof is a harmonic analysis estimate related to the Hardy-Littlewood circle method, and inspired by work of Bourgain. This is used to control the average size of the correlations of the random variables $X\left(q, a_{1}\right), \ldots, X\left(q, a_{r}\right)$.

Theorem (Ford, Harper, and L. 2019)

Assume GRH and LI. If $\log q \leq r \leq \varphi(q)$, then there exist r-tuples $\left(a_{1}, \ldots, a_{r}\right),\left(b_{1}, \ldots, b_{r}\right)$ of distinct reduced residues $\bmod q$ such that

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right) \leq \exp \left(-\frac{\min \left\{r, \varphi(q)^{1 / 50}\right\}}{C \log q}\right) \frac{1}{r!},
$$

and

$$
\delta\left(q ; b_{1}, \ldots, b_{r}\right) \geq \exp \left(\frac{\min \left\{r, \varphi(q)^{1 / 50}\right\}}{C \log q}\right) \frac{1}{r!}
$$

for some absolute constant $C>0$.

Theorem (Ford, Harper, and L. 2019)

Assume GRH and LI. If $\log q \leq r \leq \varphi(q)$, then there exist r-tuples $\left(a_{1}, \ldots, a_{r}\right),\left(b_{1}, \ldots, b_{r}\right)$ of distinct reduced residues $\bmod q$ such that

$$
\delta\left(q ; a_{1}, \ldots, a_{r}\right) \leq \exp \left(-\frac{\min \left\{r, \varphi(q)^{1 / 50}\right\}}{C \log q}\right) \frac{1}{r!},
$$

and

$$
\delta\left(q ; b_{1}, \ldots, b_{r}\right) \geq \exp \left(\frac{\min \left\{r, \varphi(q)^{1 / 50}\right\}}{C \log q}\right) \frac{1}{r!}
$$

for some absolute constant $C>0$.

- This establishes the second part of Ford and Lamzouri's Conjecture (under GRH and LI) as soon as $r / \log q \rightarrow \infty$.

Ingredients of the proof

- We extract these extreme biases from auxiliary prime races.

Ingredients of the proof

- We extract these extreme biases from auxiliary prime races.
- Let $1 \leq k \leq r / 2 \leq \varphi(q) / 2$, and define $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ to be the logarithmic density of the set of $x \geq 2$ such that

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(x ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{k}\right)>\max _{k+1 \leq j \leq r} \pi\left(x ; q, a_{j}\right)
$$

Ingredients of the proof

- We extract these extreme biases from auxiliary prime races.
- Let $1 \leq k \leq r / 2 \leq \varphi(q) / 2$, and define $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ to be the logarithmic density of the set of $x \geq 2$ such that

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(x ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{k}\right)>\max _{k+1 \leq j \leq r} \pi\left(x ; q, a_{j}\right)
$$

- If everything were uniform, we would expect that

$$
\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right) \approx(r-k)!/ r!.
$$

Ingredients of the proof

- We extract these extreme biases from auxiliary prime races.
- Let $1 \leq k \leq r / 2 \leq \varphi(q) / 2$, and define $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ to be the logarithmic density of the set of $x \geq 2$ such that

$$
\pi\left(x ; q, a_{1}\right)>\pi\left(x ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{k}\right)>\max _{k+1 \leq j \leq r} \pi\left(x ; q, a_{j}\right)
$$

- If everything were uniform, we would expect that

$$
\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right) \approx(r-k)!/ r!.
$$

- Note that $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ is the probability that

$$
X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\ldots>X\left(q, a_{k}\right)>\max _{k+1 \leq j \leq r} X\left(q, a_{j}\right) .
$$

- $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ is the probability that $X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\ldots>X\left(q, a_{k}\right)>\max _{k+1 \leq j \leq r} X\left(q, a_{j}\right)$.
- We want to "replace" the $X(q, a)$ with Gaussian random variables $Z(q, a)$ with the same mean and correlations as the $X(q, a)$.
- $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ is the probability that $X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\ldots>X\left(q, a_{k}\right)>\max _{k+1 \leq j \leq r} X\left(q, a_{j}\right)$.
- We want to "replace" the $X(q, a)$ with Gaussian random variables $Z(q, a)$ with the same mean and correlations as the $X(q, a)$.
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ is the probability that $X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\ldots>X\left(q, a_{k}\right)>\max _{k+1 \leq j \leq r} X\left(q, a_{j}\right)$.
- We want to "replace" the $X(q, a)$ with Gaussian random variables $Z(q, a)$ with the same mean and correlations as the $X(q, a)$.
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max _{k+1 \leq j \leq r} Z\left(q, a_{j}\right)$ is around $\sqrt{2 \log r}$ with high probability.
- $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ is the probability that $X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\ldots>X\left(q, a_{k}\right)>\max _{k+1 \leq j \leq r} X\left(q, a_{j}\right)$.
- We want to "replace" the $X(q, a)$ with Gaussian random variables $Z(q, a)$ with the same mean and correlations as the $X(q, a)$.
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max _{k+1 \leq j \leq r} Z\left(q, a_{j}\right)$ is around $\sqrt{2 \log r}$ with high probability.
- We arrange for $Z\left(q, a_{1}\right), \cdots, Z\left(q, a_{k}\right)$ to have large (negative) correlations of size $-c / \log q$.
- $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ is the probability that $X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\ldots>X\left(q, a_{k}\right)>\max _{k+1 \leq j \leq r} X\left(q, a_{j}\right)$.
- We want to "replace" the $X(q, a)$ with Gaussian random variables $Z(q, a)$ with the same mean and correlations as the $X(q, a)$.
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max _{k+1 \leq j \leq r} Z\left(q, a_{j}\right)$ is around $\sqrt{2 \log r}$ with high probability.
- We arrange for $Z\left(q, a_{1}\right), \cdots, Z\left(q, a_{k}\right)$ to have large (negative) correlations of size $-c / \log q$.
- This produces a bias of size $\exp \left(-c k \frac{(\sqrt{2 \log r})^{2}}{\log q}\right)=\exp \left(-c_{0} k \frac{\log r}{\log q}\right)$.
- $\delta_{k}\left(q ; a_{1}, \ldots, a_{r}\right)$ is the probability that $X\left(q, a_{1}\right)>X\left(q, a_{2}\right)>\ldots>X\left(q, a_{k}\right)>\max _{k+1 \leq j \leq r} X\left(q, a_{j}\right)$.
- We want to "replace" the $X(q, a)$ with Gaussian random variables $Z(q, a)$ with the same mean and correlations as the $X(q, a)$.
- To this end, we establish a new quantitative multi-dimensional Gaussian approximation theorem using a Lindeberg type method.
- One can show that $\max _{k+1 \leq j \leq r} Z\left(q, a_{j}\right)$ is around $\sqrt{2 \log r}$ with high probability.
- We arrange for $Z\left(q, a_{1}\right), \cdots, Z\left(q, a_{k}\right)$ to have large (negative) correlations of size $-c / \log q$.
- This produces a bias of size $\exp \left(-c k \frac{(\sqrt{2 \log r})^{2}}{\log q}\right)=\exp \left(-c_{0} k \frac{\log r}{\log q}\right)$.
- We finally choose k such that $k \log r / \log q \rightarrow \infty$ as $q \rightarrow \infty$.

Other directions

- Prime races in function fields: Generalization of Rubinstein-Sarnak (Cha, 2008),

Other directions

- Prime races in function fields: Generalization of Rubinstein-Sarnak (Cha, 2008), asymptotic formulas for the densities when r is fixed or $r=o(\sqrt{\log q})($ Sedrati 2022) ...

Other directions

- Prime races in function fields: Generalization of Rubinstein-Sarnak (Cha, 2008), asymptotic formulas for the densities when r is fixed or $r=o(\sqrt{\log q})$ (Sedrati 2022) ...
- Weakening the LI hypothesis: Martin-Ng (2020) and Devin (2020).

Other directions

- Prime races in function fields: Generalization of Rubinstein-Sarnak (Cha, 2008), asymptotic formulas for the densities when r is fixed or $r=o(\sqrt{\log q})$ (Sedrati 2022) ...
- Weakening the LI hypothesis: Martin-Ng (2020) and Devin (2020).
- Chebyshev's bias in the number field setting (for Frobenius elements in Galois extensions): Ng (2000), Fiorilli-Jouve (2020), Bailleul (2021), Hayani (2024),

Thank you for your attention!

