The Riemann hypothesis via the generalized von Mangoldt function

Speaker: Saloni Sinha

Date: Thu, Jun 20, 2024

Location: PIMS, University of British Columbia

Conference: Comparative Prime Number Theory

Subject: Mathematics, Number Theory

Class: Scientific

CRG: L-Functions in Analytic Number Theory

Abstract:

Based on work previously done by Gonek, Graham, and Lee, we show that the Riemann Hypothesis (RH) can be reformulated in terms of certain asymptotic estimates for twisted sums with k-fold convolution of von Mangoldt function and the generalized von Mangoldt function. For each $k \in\mathbb{N}$, we study two types of twisted sums:

1. $\sum_{n\leq x} \Lambda^k(n)n^{-iy}$, where $\Lambda^k(n) = \underbrace{\Lambda\star\cdots\Lambda}_\text{k copies}$
2. $\sum_{n\leq x} \Lambda_k(n)n^{-iy}$, where $\Lambda_k(n) :=\sum_{d|n}\mu(d)\left(\log{\frac{n}{d}}\right)^k$.

Where $\Lambda$ is the von Mangoldt function and $\mu$ is the Möbius function, and establish similar connections with RH.

Additional Files: