The Riemann Hypothesis via the generalized von Mangoldt function

Saloni Sinha

University of Missouri

(based on joint work with William Banks)

Comparative Prime Number Theory Sympoisum

June 20, 2024

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

イロト イポト イヨト イヨト

э

Sac

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p (1 - p^{-s})^{-1}$$

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

・ロト ・ 同ト ・ ヨト ・ ヨー・ つ ら ()・

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} (1 - p^{-s})^{-1}$$

• The Riemann hypothesis asserts that all non-trivial zeros of $\zeta(s)$ lie on the line $\sigma = 1/2$.

(日)

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} (1 - p^{-s})^{-1}$$

- The Riemann hypothesis asserts that all non-trivial zeros of $\zeta(s)$ lie on the line $\sigma = 1/2$.
- 2 The logarithmic derivative of $\zeta(s)$ is related to the von Mangoldt function:

$$-\frac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \Lambda(n) n^{-s}$$

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} (1 - p^{-s})^{-1}$$

- The Riemann hypothesis asserts that all non-trivial zeros of $\zeta(s)$ lie on the line $\sigma = 1/2$.
- The logarithmic derivative of $\zeta(s)$ is related to the von Mangoldt function:

$$-rac{\zeta'}{\zeta}(s) = \sum_{n=1}^{\infty} \Lambda(n) n^{-s}$$

Here, $\Lambda(n)$ is defined as:

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^{\alpha} \text{ for } p \text{ prime and some } \alpha > 1 \\ 0 & \text{otherwise} \end{cases}$$

Saloni Sinha

The Riemann Hypothesis via the generalized von Mangoldt function

Theorem (Gonek, Graham, Lee, 2020)

A necessary and sufficient condition for the truth of the Riemann Hypothesis is that for any fixed constants ε , B > 0, one has the uniform estimate

$$\sum_{n \leqslant x} \Lambda(n) n^{-iy} = \frac{x^{1-iy}}{1-iy} + O(x^{1/2}|y|^{\varepsilon}) \qquad (2 \leqslant x \leqslant |y|^{B}), \qquad (1.1)$$

where Λ is the von Mangoldt function.

3

nan

 In their paper, they conjecture a generalized Lindelöf hypothesis for integer sequences, which they call LH(*N*).

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

- In their paper, they conjecture a generalized Lindelöf hypothesis for integer sequences, which they call LH(*N*).
- By taking *N* to be the sequence of prime numbers, they prove that LH(ℙ), where ℙ is the set of primes numbers is equivalent to the Riemann hypothesis.

- In their paper, they conjecture a generalized Lindelöf hypothesis for integer sequences, which they call LH(*N*).
- By taking *N* to be the sequence of prime numbers, they prove that LH(ℙ), where ℙ is the set of primes numbers is equivalent to the Riemann hypothesis.

Theorem (von Koch, 1901) Assume RH. Then for $x \ge 2$, $\psi(x) = \sum_{n \le x} \Lambda(n) = x + O(x^{1/2} (\log x)^2).$

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

The k-fold convolution of the von Mangoldt function denoted by Λ^k is:

$$\Lambda^k := \underbrace{\Lambda \star \cdots \star \Lambda}_{k \text{ copies}}.$$

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

A D F A B F A B F A B F

= nar

The k-fold convolution of the von Mangoldt function denoted by Λ^k is:

$$\Lambda^k := \underbrace{\Lambda \star \cdots \star \Lambda}_{k \text{ copies}}.$$

The Dirichlet series corresponding to $\Lambda^k(n)$ is

$$\sum_{n=1}^{\infty} \Lambda^{k}(n) n^{-s} = (-1)^{k} \left\{ \frac{\zeta'}{\zeta}(s) \right\}^{k} \qquad (\sigma > 1).$$

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

A D F A B F A B F A B F

э

Sac

The generalized von Mangoldt function denoted by Λ_k is defined as:

$$\Lambda_k := \mu \star L^k$$

where μ is the Möbius function and L the natural logarithm.

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

3

Sac

The generalized von Mangoldt function denoted by Λ_k is defined as:

$$\Lambda_k := \mu \star L^k$$

where μ is the Möbius function and L the natural logarithm.

The Dirichlet series corresponding to $\Lambda_k(n)$ is

$$\sum_{n=1}^{\infty} \Lambda_k(n) n^{-s} = (-1)^k \frac{\zeta^{(k)}}{\zeta}(s) \qquad (\sigma > 1).$$

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

Our Result

• We study twisted sums of the form:

$$\psi^{k}(x, y) := \sum_{n \leq x} \Lambda^{k}(n) n^{-iy}$$

$$\psi_{k}(x, y) := \sum_{n \leq x} \Lambda_{k}(n) n^{-iy}$$
(1.2)
(1.3)

イロト イポト イヨト イヨト

E 990

Our Result

• We study twisted sums of the form:

$$\psi^{k}(x, y) := \sum_{n \leq x} \Lambda^{k}(n) n^{-iy}$$

$$\psi_{k}(x, y) := \sum_{n \leq x} \Lambda_{k}(n) n^{-iy}$$
(1.2)
(1.3)

• **Goal:** To reformulate Riemann hypothesis in terms of asymptotic estimates for twisted sums with Λ^k and Λ_k .

Our Result

• We study twisted sums of the form:

$$\psi^{k}(x, y) := \sum_{n \leq x} \Lambda^{k}(n) n^{-iy}$$
(1.2)
$$\psi_{k}(x, y) := \sum_{n \leq x} \Lambda_{k}(n) n^{-iy}$$
(1.3)

- Goal: To reformulate Riemann hypothesis in terms of asymptotic estimates for twisted sums with Λ^k and Λ_k.
- We prove the analogues of Gonek, Graham and Lee's result with twisted partials sums involving Λ^k and Λ_k.

Main Theorems for $\psi^k(x, y) = \sum_{n \leq x} \Lambda^k(n) n^{-iy}$

Theorem 1 (Banks, S., 2022)

Fix $k \in \mathbb{N}$. If the Riemann Hypothesis is true, then

$$\psi^{k}(x,y) = \operatorname{Res}_{w=1-iy} \left(\left\{ -\frac{\zeta'}{\zeta} (w+iy) \right\}^{k} \frac{x^{w}}{w} \right) + O(x^{1/2} \{ \log(x+|y|) \}^{2k+1})$$

holds uniformly for all $x, y \in \mathbb{R}$, $x \ge 2$, where the implied constant depends only on k. The residual term can be omitted if $|y| > \sqrt{x}$, and the exponent 2k + 1 can be replaced by 2 in the case that k = 1.

イロト イポト イヨト イヨト

3

nan

Theorem 2 (Banks, S., 2022)

Fix $k \in \mathbb{N}$, and suppose that for any $\varepsilon > 0$ the estimate

$$\psi^{k}(x,y) = \operatorname{Res}_{w=1-iy}\left(\left\{-\frac{\zeta'}{\zeta}(w+iy)\right\}^{k}\frac{x^{w}}{w}\right) + O(x^{1/2}(x+|y|)^{\varepsilon})$$

holds uniformly for all $x, y \in \mathbb{R}$, $x \ge 2$, where the implied constant depends only on k and ε . Then the Riemann Hypothesis is true.

3

Sac

• With k = 1, we get:

$$\sum_{n \leqslant x} \Lambda(n) n^{-iy} = \frac{x^{1-iy}}{1-iy} + O\big(x^{1/2} \{\log(x+|y|)\}^2\big) \qquad (x,y \in \mathbb{R}, \ x \geqslant 2)$$

which strengthens the estimate from the previously proven result.

∃ nar

• With k = 1, we get:

$$\sum_{n \leq x} \Lambda(n) n^{-iy} = \frac{x^{1-iy}}{1-iy} + O\big(x^{1/2} \{\log(x+|y|)\}^2\big) \qquad (x,y \in \mathbb{R}, \ x \geq 2)$$

which strengthens the estimate from the previously proven result.

• With k = 1 and y = 0, we recover the result of von Koch which says that under RH, one has

$$\psi(x) = x + O(x^{1/2}(\log x)^2).$$

(日) (日) (日) (日) (日) (日) (日)

• With k = 1, we get:

$$\sum_{n\leqslant x} \Lambda(n)n^{-iy} = \frac{x^{1-iy}}{1-iy} + O\big(x^{1/2}\{\log(x+|y|)\}^2\big) \qquad (x,y\in\mathbb{R},\ x\geqslant 2)$$

which strengthens the estimate from the previously proven result.

• With k = 1 and y = 0, we recover the result of von Koch which says that under RH, one has

$$\psi(x) = x + O(x^{1/2}(\log x)^2).$$

• Theorem (1) (with k := 2) provides the conditional estimate

$$\sum_{n \leq x} (\Lambda \star \Lambda)(n) n^{-iy} = \frac{x^{1-iy} (\log x - 2C_0)}{1 - iy} - \frac{x^{1-iy}}{(1 - iy)^2} + O(x^{1/2} \{\log(x + |y|)\}^5).$$

Main Theorems for $\psi_k(x, y) = \sum_{n \leq x} \Lambda_k(n) n^{-iy}$

Theorem 3 (Banks, S., 2022)

Fix $k \in \mathbb{N}$. If the Riemann Hypothesis is true, then the estimate

$$\psi_k(x,y) = (-1)^k \operatorname{Res}_{w=1-iy} \left(\frac{\zeta^{(k)}}{\zeta} (w+iy) \frac{x^w}{w} \right) + O(x^{1/2} \{ \log(x+|y|) \}^{2k+1})$$

holds uniformly for all $x, y \in \mathbb{R}$, $x \ge 2$, where the implied constant depends only on k. The residual term can be omitted if $|y| > \sqrt{x}$, and the exponent 2k + 1 can be replaced by 2 in the case that k = 1.

イロト イポト イヨト イヨト

э

nan

Theorem 4 (Banks, S., 2022)

Fix $k \in \mathbb{N}$, and suppose that for any $\varepsilon > 0$ the estimate

$$\psi_k(x,y) = (-1)^k \operatorname{Res}_{w=1-iy} \left(\frac{\zeta^{(k)}}{\zeta} (w+iy) \frac{x^w}{w} \right) + O(x^{1/2} (x+|y|)^{\varepsilon})$$

holds uniformly for all $x, y \in \mathbb{R}$, $x \ge 2$, where the implied constant depends only on k and ε . Then the Riemann Hypothesis is true.

3

Sac

• Theorem (3) (with k := 2) asserts that the conditional estimate

$$\sum_{n \leqslant x} \Lambda_2(n) n^{-iy} = \frac{2x^{1-iy} (\log x - C_0)}{(1-iy)} - \frac{2x^{1-iy}}{(1-iy)^2} + O(x^{1/2} \{\log(x+|y|)\}^5)$$

holds uniformly for all $x, y \in \mathbb{R}, x \ge 2$.

(日)

• Theorem (3) (with k := 2) asserts that the conditional estimate

$$\sum_{n \leqslant x} \Lambda_2(n) n^{-iy} = \frac{2x^{1-iy} (\log x - C_0)}{(1-iy)} - \frac{2x^{1-iy}}{(1-iy)^2} + O(x^{1/2} \{\log(x+|y|)\}^5)$$

holds uniformly for all $x, y \in \mathbb{R}$, $x \ge 2$.

• In particular, under RH we have

$$\sum_{n \leqslant x} \Lambda_2(n) = 2x(\log x - C_0 - 1) + O(x^{1/2}(\log x)^5).$$

<ロト < 理ト < 注ト < 注ト = 三 の < ()

• The distribution of primes is influenced by the zeros of zeta function, but our results suggest that these zeros also influence the distribution of almost-primes.

イロト 不得 トイヨト イヨト

∃ nar

- The distribution of primes is influenced by the zeros of zeta function, but our results suggest that these zeros also influence the distribution of almost-primes.
- We expect that these results also hold for a wider class of arithmetic functions.

イロト 不得 トイヨト イヨト

E ∽QQ

• Let $x, y \in \mathbb{R}$ with $x \ge 2$. Let

 $\sigma_0 \coloneqq 1 + 1/\log x$ and $T \in \left[\sqrt{x} + 10, \sqrt{x} + 11\right].$

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

<ロト < 課 ト < 注 ト < 注 ト 三 の < @</p>

• Let $x, y \in \mathbb{R}$ with $x \ge 2$. Let

 $\sigma_0 \coloneqq 1 + 1/\log x$ and $T \in \left[\sqrt{x} + 10, \sqrt{x} + 11\right].$

• We use Perron's formula:

$$\sum_{n \leq x} a_n(y) = \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \alpha(y, s) \frac{x^s}{s} \, ds + O(E). \tag{1.4}$$

• Let $x, y \in \mathbb{R}$ with $x \ge 2$. Let

 $\sigma_0 \coloneqq 1 + 1/\log x$ and $T \in \left[\sqrt{x} + 10, \sqrt{x} + 11\right].$

• We use Perron's formula:

$$\sum_{n \leq x} a_n(y) = \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \alpha(y, s) \frac{x^s}{s} \, ds + O(E). \tag{1.4}$$

• For Thm 1, $a_n(y) = \Lambda^k(n)n^{-iy}$ and $\alpha(y, s) = (-1)^k \left\{ \frac{\zeta'}{\zeta}(s) \right\}^k$.

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

(日)

• Let $x, y \in \mathbb{R}$ with $x \ge 2$. Let

 $\sigma_0 \coloneqq 1 + 1/\log x$ and $T \in \left[\sqrt{x} + 10, \sqrt{x} + 11\right].$

• We use Perron's formula:

$$\sum_{n \leq x} a_n(y) = \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \alpha(y, s) \frac{x^s}{s} \, ds + O(E). \tag{1.4}$$

• For Thm 1, $a_n(y) = \Lambda^k(n)n^{-iy}$ and $\alpha(y, s) = (-1)^k \left\{ \frac{\zeta'}{\zeta}(s) \right\}^k$.

• For Thm 3, $a_n(y) = \Lambda_k(n)n^{-iy}$ and $\alpha(y, s) = (-1)^k \frac{\zeta^{(k)}}{\zeta}(s)$.

- We split into two cases:
 - For Case k = 1, we choose the contour \mathscr{C} in \mathbb{C} that connects

$$\sigma_0 - iT \longrightarrow \sigma_0 + iT \longrightarrow -1 + iT \longrightarrow -1 - iT \longrightarrow \sigma_0 - iT.$$

2 For Cases $k \ge 2$, we choose the contour \mathscr{C} in \mathbb{C} that connects:

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

Bounds on $\zeta^{(k)}/\zeta$ and $(\zeta'/\zeta)^k$

Proposition 1.1 (For $k \ge 2$)

Assume RH. For any $k \in \mathbb{N}$ and $x \ge 2$, the bounds

$$\left\{\frac{\zeta'}{\zeta}(\boldsymbol{s})\right\}^{k} \ll \left(\log(\boldsymbol{x}\tau)\log\tau\right)^{k}$$
(1.5)

and

$$\frac{\zeta^{(k)}}{\zeta}(s) \ll \left(\log(x\tau)\log\tau\right)^k \tag{1.6}$$

hold uniformly throughout the region

$$\mathcal{R}_{\boldsymbol{x}} := \big\{ \boldsymbol{s} \in \mathbb{C} : \frac{1}{2} + \frac{1}{\log \boldsymbol{x}} \leqslant \sigma \leqslant \boldsymbol{2}, \ |\boldsymbol{s} - \boldsymbol{1}| > \frac{1}{100} \big\}.$$

A D > A D > A D > A D >

э

Sac

Denote

$$\Psi(x,y) := \sum_{n \leqslant x} a_n(y)$$

1

(hence $\Psi = \psi^k$ or ψ_k) and

$$R(x, y) := \Psi(x, y) - \operatorname{Res}_{w=1-iy} \left(\alpha(y, w) \frac{x^w}{w} \right)$$

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Denote

$$\Psi(x,y) := \sum_{n \leqslant x} a_n(y)$$

(hence $\Psi = \psi^k$ or ψ_k) and

$$R(x,y) := \Psi(x,y) - \mathop{\mathrm{Res}}\limits_{w=1-iy} \Big(lpha(y,w) rac{x^w}{w} \Big).$$

• Our hypothesis (in both theorems) is that

$$R(x,y) \ll x^{1/2}(x+|y|)^{\varepsilon}.$$
 (1.7)

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

∃ nar

Denote

$$\Psi(x,y) := \sum_{n \leqslant x} a_n(y)$$

(hence $\Psi = \psi^k$ or ψ_k) and

$$R(x,y) := \Psi(x,y) - \mathop{\mathrm{Res}}\limits_{w=1-iy} \Big(lpha(y,w) rac{x^w}{w} \Big).$$

• Our hypothesis (in both theorems) is that

$$R(x,y) \ll x^{1/2}(x+|y|)^{\varepsilon}.$$
 (1.7)

We want to show if (1.7) holds, then RH is true.

イロト 不得 トイヨト イヨト

E DQC

• Suppose, on the contrary, (1.7) holds, and $\rho_0 = \beta_0 + i\gamma_0$ is a zero of the zeta function with $\beta_0 > \frac{1}{2}$.

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

- Suppose, on the contrary, (1.7) holds, and $\rho_0 = \beta_0 + i\gamma_0$ is a zero of the zeta function with $\beta_0 > \frac{1}{2}$.
- Let *H* be the meromorphic function defined in half-plane $\sigma > 2$ by

$$H(s) := \int_1^\infty R(x,y) x^{-s} \, dx.$$

(日)

- Suppose, on the contrary, (1.7) holds, and $\rho_0 = \beta_0 + i\gamma_0$ is a zero of the zeta function with $\beta_0 > \frac{1}{2}$.
- Let *H* be the meromorphic function defined in half-plane $\sigma > 2$ by

$$H(s) := \int_1^\infty R(x,y) x^{-s} \, dx.$$

(日)

- Suppose, on the contrary, (1.7) holds, and $\rho_0 = \beta_0 + i\gamma_0$ is a zero of the zeta function with $\beta_0 > \frac{1}{2}$.
- Let *H* be the meromorphic function defined in half-plane $\sigma > 2$ by

$$H(s):=\int_1^\infty R(x,y)x^{-s}\,dx.$$

• Let *m* be the multiplicity of ρ_0 , and define

$$h(s) := \frac{(s-2+iy)^k \zeta (s-1+iy)^k}{(s-1+iy-\rho_0)^{mk-k_\star(\rho_0)+1} (s+iy+1)^{4k}}.$$

where

$$k_{\star}(\rho) :=$$
 the order of the pole of $H(s)$ at $s - 1 + iy = \rho_0$.

• The function h(s) has been crafted so that:

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The function *h*(*s*) has been crafted so that:
 - It is meromorphic for $s \in \mathbb{C}$.

- The function *h*(*s*) has been crafted so that:
 - It is meromorphic for $s \in \mathbb{C}$.
 - 2 The product H(s)h(s) has no pole in the half-plane $\sigma > 1$ other than a simple pole at $s = \rho_0 + 1 iy$.

- The function *h*(*s*) has been crafted so that:
 - It is meromorphic for $s \in \mathbb{C}$.
 - 2 The product H(s)h(s) has no pole in the half-plane $\sigma > 1$ other than a simple pole at $s = \rho_0 + 1 iy$.
 - Some other things ...

- The function *h*(*s*) has been crafted so that:
 - **1** It is meromorphic for $s \in \mathbb{C}$.
 - 2 The product H(s)h(s) has no pole in the half-plane $\sigma > 1$ other than a simple pole at $s = \rho_0 + 1 iy$.
 - Some other things ...
- We calculate the integral below in two different ways-

$$\frac{1}{2\pi i}\int_{3-i\infty}^{3+i\infty}h(s)H(s)e^{s\log x}\,ds$$

• First Way: By shifting the line of integration to $\sigma = \frac{5}{4}$.

$$\frac{1}{2\pi i} \int_{3-i\infty}^{3+i\infty} h(s) H(s) e^{s \log x} \, ds = c \, x^{\rho_0 - iy + 1} + O(x^{5/4}), \qquad (1.8)$$

where $c x^{\rho_0 - iy + 1}$ is the residue at $s = \rho_0 + iy - 1$.

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

<ロト < 課 > < 目 > < 目 > < 目 > の < @</p>

• First Way: By shifting the line of integration to $\sigma = \frac{5}{4}$.

$$\frac{1}{2\pi i} \int_{3-i\infty}^{3+i\infty} h(s) H(s) e^{s \log x} \, ds = c \, x^{\rho_0 - iy + 1} + O(x^{5/4}), \qquad (1.8)$$

where $c \, x^{\rho_0 - iy + 1}$ is the residue at $s = \rho_0 + iy - 1$.

• Second Way: By changing the order of integration:

$$rac{1}{2\pi i}\int_{3-i\infty}^{3+i\infty}h(s)H(s)e^{s\log x}\,ds\ll\int_1^xR(z,y)\,dz \mathop{\ll}\limits_{ ext{hypothesis}}x^{3/2}(x+|y|)^arepsilon$$

(日)

• **First Way:** By shifting the line of integration to $\sigma = \frac{5}{4}$.

$$\frac{1}{2\pi i} \int_{3-i\infty}^{3+i\infty} h(s) H(s) e^{s \log x} \, ds = c \, x^{\rho_0 - iy + 1} + O(x^{5/4}), \qquad (1.8)$$

where $c \, x^{\rho_0 - iy + 1}$ is the residue at $s = \rho_0 + iy - 1$.

• Second Way: By changing the order of integration:

$$\frac{1}{2\pi i}\int_{3-i\infty}^{3+i\infty}h(s)H(s)e^{s\log x}\,ds\ll\int_1^x R(z,y)\,dz \ll_{\text{hypothesis}} x^{3/2}(x+|y|)^\varepsilon$$

• Comparing the two integrals, we get for every $\varepsilon > 0$:

$$|x^{eta_0+1} \ll \left| c \, x^{
ho_0 - i y + 1}
ight| \ll x^{3/2} (x + |y|)^{arepsilon}$$

which gives us the desired contradiction.

(日)

THANK YOU!!!

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

References

- S. M. Gonek, S. W. Graham, and Y. Lee, The Lindelöf hypothesis for primes is equivalent to the Riemann hypothesis. *Proc. Amer. Math. Soc.* 148 (2020), no. 7, 2863–2875.
- H. L. Montgomery and R. C. Vaughan, *Multiplicative number theory. I. Classical theory.* Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007.
- H. Iwaniec and E. Kowalski, *Analytic number theory.* American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004.
- E. T. Whittaker and G. N. Watson, *A course of modern analysis.* Fourth edition. Reprinted Cambridge University Press, New York 1962.
- H. von Koch, Sur la distribution des nombres premiers. *Acta Math.* 24 (1901), no. 1, 159–182.