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Let s = σ + it be a complex variable. The Riemann-zeta function is defined
as:

ζ(s) :=
∞∑

n=1

1
ns =

∏
p

(1 − p−s)−1

1 The Riemann hypothesis asserts that all non-trivial zeros of ζ(s) lie on
the line σ = 1/2.

2 The logarithmic derivative of ζ(s) is related to the von Mangoldt
function:

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)n−s

Here, Λ(n) is defined as:

Λ(n) =

{
log p if n = pα for p prime and some α > 1
0 otherwise
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Previous Results

Theorem (Gonek, Graham, Lee, 2020)
A necessary and sufficient condition for the truth of the Riemann
Hypothesis is that for any fixed constants ε,B > 0, one has the uniform
estimate ∑

n⩽x

Λ(n)n−iy =
x1−iy

1 − iy
+ O(x1/2|y |ε) (2 ⩽ x ⩽ |y |B), (1.1)

where Λ is the von Mangoldt function.
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In their paper, they conjecture a generalized Lindelöf hypothesis for
integer sequences, which they call LH(N ).

By taking N to be the sequence of prime numbers, they prove that
LH(P), where P is the set of primes numbers is equivalent to the
Riemann hypothesis.

Theorem (von Koch, 1901)
Assume RH. Then for x ⩾ 2,

ψ(x) =
∑
n⩽x

Λ(n) = x + O(x1/2(log x)2).
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Definition
The k-fold convolution of the von Mangoldt function denoted by Λk is:

Λk ..= Λ ⋆ · · · ⋆ Λ︸ ︷︷ ︸
k copies

.

The Dirichlet series corresponding to Λk(n) is

∞∑
n=1

Λk(n)n−s = (−1)k
{
ζ ′

ζ
(s)

}k

(σ > 1).
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Definition
The generalized von Mangoldt function denoted by Λk is defined as:

Λk
..= µ ⋆ Lk

where µ is the Möbius function and L the natural logarithm.

The Dirichlet series corresponding to Λk(n) is

∞∑
n=1

Λk(n)n−s = (−1)k ζ

ζ

(k)

(s) (σ > 1).
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Our Result

We study twisted sums of the form:

ψk(x , y) :=
∑
n⩽x

Λk(n)n−iy (1.2)

ψk(x , y) :=
∑
n⩽x

Λk(n)n−iy (1.3)

Goal: To reformulate Riemann hypothesis in terms of asymptotic
estimates for twisted sums with Λk and Λk .
We prove the analogues of Gonek, Graham and Lee’s result with
twisted partials sums involving Λk and Λk .

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function



Our Result

We study twisted sums of the form:

ψk(x , y) :=
∑
n⩽x

Λk(n)n−iy (1.2)

ψk(x , y) :=
∑
n⩽x

Λk(n)n−iy (1.3)

Goal: To reformulate Riemann hypothesis in terms of asymptotic
estimates for twisted sums with Λk and Λk .

We prove the analogues of Gonek, Graham and Lee’s result with
twisted partials sums involving Λk and Λk .

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function



Our Result

We study twisted sums of the form:

ψk(x , y) :=
∑
n⩽x

Λk(n)n−iy (1.2)

ψk(x , y) :=
∑
n⩽x

Λk(n)n−iy (1.3)

Goal: To reformulate Riemann hypothesis in terms of asymptotic
estimates for twisted sums with Λk and Λk .
We prove the analogues of Gonek, Graham and Lee’s result with
twisted partials sums involving Λk and Λk .

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function



Main Theorems for ψk(x , y) =
∑
n⩽x

Λk(n)n−iy

Theorem 1 (Banks, S., 2022)
Fix k ∈ N. If the Riemann Hypothesis is true, then

ψk(x , y) = Res
w=1−iy

({
− ζ ′

ζ
(w + iy)

}k xw

w

)
+ O

(
x1/2{log(x + |y |)}2k+1)

holds uniformly for all x , y ∈ R, x ⩾ 2, where the implied constant depends
only on k. The residual term can be omitted if |y | >

√
x, and the exponent

2k + 1 can be replaced by 2 in the case that k = 1.

Saloni Sinha The Riemann Hypothesis via the generalized von Mangoldt function



Theorem 2 (Banks, S., 2022)
Fix k ∈ N, and suppose that for any ε > 0 the estimate

ψk(x , y) = Res
w=1−iy

({
− ζ ′

ζ
(w + iy)

}k xw

w

)
+ O

(
x1/2(x + |y |)ε

)
holds uniformly for all x , y ∈ R, x ⩾ 2, where the implied constant depends

only on k and ε. Then the Riemann Hypothesis is true.
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Applications
With k = 1, we get:∑

n⩽x

Λ(n)n−iy =
x1−iy

1 − iy
+ O

(
x1/2{log(x + |y |)}2) (x , y ∈ R, x ⩾ 2)

which strengthens the estimate from the previously proven result.

With k = 1 and y = 0, we recover the result of von Koch which says
that under RH, one has

ψ(x) = x + O(x1/2(log x)2).

Theorem (1) (with k ..= 2) provides the conditional estimate∑
n⩽x

(Λ⋆Λ)(n)n−iy =
x1−iy(log x − 2C0)

1 − iy
− x1−iy

(1 − iy)2+O
(
x1/2{log(x+|y |)}5).
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Main Theorems for ψk(x , y) =
∑
n⩽x

Λk(n)n−iy

Theorem 3 (Banks, S., 2022)
Fix k ∈ N. If the Riemann Hypothesis is true, then the estimate

ψk(x , y) = (−1)k Res
w=1−iy

(
ζ

ζ

(k)

(w + iy)
xw

w

)
+ O

(
x1/2{log(x + |y |)}2k+1)

holds uniformly for all x , y ∈ R, x ⩾ 2, where the implied constant depends
only on k. The residual term can be omitted if |y | >

√
x, and the exponent

2k + 1 can be replaced by 2 in the case that k = 1.
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Theorem 4 (Banks, S., 2022)
Fix k ∈ N, and suppose that for any ε > 0 the estimate

ψk(x , y) = (−1)k Res
w=1−iy

(
ζ

ζ

(k)

(w + iy)
xw

w

)
+ O

(
x1/2(x + |y |)ε

)
holds uniformly for all x , y ∈ R, x ⩾ 2, where the implied constant depends

only on k and ε. Then the Riemann Hypothesis is true.
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Applications

Theorem (3) (with k ..= 2) asserts that the conditional estimate∑
n⩽x

Λ2(n)n−iy =
2x1−iy(log x − C0)

(1 − iy)
− 2x1−iy

(1 − iy)2 + O
(
x1/2{log(x + |y |)}5)

holds uniformly for all x , y ∈ R, x ⩾ 2.

In particular, under RH we have∑
n⩽x

Λ2(n) = 2x(log x − C0 − 1) + O
(
x1/2(log x)5).
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Implications

The distribution of primes is influenced by the zeros of zeta function,
but our results suggest that these zeros also influence the distribution
of almost-primes.

We expect that these results also hold for a wider class of arithmetic
functions.
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Proof of Theorems 1 and 3
Let x , y ∈ R with x ⩾ 2. Let

σ0
..= 1 + 1/ log x and T ∈

[√
x + 10,

√
x + 11

]
.

We use Perron’s formula:∑
n⩽x

an(y) =
1

2πi

∫σ0+iT

σ0−iT
α(y , s)

xs

s
ds + O(E). (1.4)

For Thm 1, an(y) = Λk(n)n−iy and α(y , s) = (−1)k

{
ζ ′

ζ
(s)

}k

.

For Thm 3, an(y) = Λk(n)n−iy and α(y , s) = (−1)k ζ
(k)

ζ
(s).
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We split into two cases:
1 For Case k = 1, we choose the contour C in C that connects

σ0 − iT −→ σ0 + iT −→ −1 + iT −→ −1 − iT −→ σ0 − iT .

2 For Cases k ⩾ 2, we choose the contour C in C that connects:

σ0 − iT −→ σ0 + iT −→ 1
2 + 1

log x + iT −→ 1
2 + 1

log x − iT −→ σ0 − iT .
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Bounds on ζ(k)/ζ and (ζ ′/ζ)k

Proposition 1.1 (For k ⩾ 2)

Assume RH. For any k ∈ N and x ⩾ 2, the bounds{ζ ′
ζ
(s)

}k
≪

(
log(xτ) log τ

)k (1.5)

and
ζ

ζ

(k)

(s) ≪
(
log(xτ) log τ

)k (1.6)

hold uniformly throughout the region

Rx
..=

{
s ∈ C : 1

2 + 1
log x ⩽ σ ⩽ 2, |s − 1| > 1

100

}
.
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Proof of Theorems 2 and 4

Denote
Ψ(x , y) ..=

∑
n⩽x

an(y)

(hence Ψ = ψk or ψk ) and

R(x , y) ..= Ψ(x , y)− Res
w=1−iy

(
α(y ,w)

xw

w

)
.

Our hypothesis (in both theorems) is that

R(x , y) ≪ x1/2(x + |y |)ε. (1.7)

We want to show if (1.7) holds, then RH is true.
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Suppose, on the contrary, (1.7) holds, and ρ0 = β0 + iγ0 is a zero of the
zeta function with β0 >

1
2 .

Let H be the meromorphic function defined in half-plane σ > 2 by

H(s) :=
∫∞

1
R(x , y)x−s dx .

Let m be the multiplicity of ρ0, and define

h(s) ..=
(s − 2 + iy)kζ(s − 1 + iy)k

(s − 1 + iy − ρ0)mk−k⋆(ρ0)+1(s + iy + 1)4k .

where

k⋆(ρ) ..= the order of the pole of H(s) at s − 1 + iy = ρ0.
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The function h(s) has been crafted so that:

1 It is meromorphic for s ∈ C.
2 The product H(s)h(s) has no pole in the half-plane σ > 1 other than a

simple pole at s = ρ0 + 1 − iy .

3 Some other things . . .

We calculate the integral below in two different ways-

1
2πi

∫3+i∞

3−i∞
h(s)H(s)es log x ds.
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We calculate the integral below in two different ways-

1
2πi

∫3+i∞

3−i∞
h(s)H(s)es log x ds.
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First Way: By shifting the line of integration to σ = 5
4 .

1
2πi

∫3+i∞

3−i∞
h(s)H(s)es log x ds = c xρ0−iy+1 + O(x5/4), (1.8)

where c xρ0−iy+1 is the residue at s = ρ0 + iy − 1.

Second Way: By changing the order of integration:

1
2πi

∫3+i∞

3−i∞
h(s)H(s)es log x ds ≪

∫ x

1
R(z, y)dz ≪

hypothesis
x3/2(x + |y |)ε

Comparing the two integrals, we get for every ε > 0 :

xβ0+1 ≪
∣∣c xρ0−iy+1

∣∣ ≪ x3/2(x + |y |)ε

which gives us the desired contradiction.
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THANK YOU!!!
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