Remarks on Landau–Siegel zeros

Speaker: Debmalya Basak

Date: Tue, Jun 18, 2024

Location: PIMS, University of British Columbia

Conference: Comparative Prime Number Theory

Subject: Mathematics, Number Theory

Class: Scientific

CRG: L-Functions in Analytic Number Theory


One of the central problems in comparative prime number theory involves understanding primes in
arithmetic progressions. The distribution of primes in arithmetic progressions are sensitive to real zeros near $s = 1$ of L-functions associated to primitive real Dirichlet characters. The Generalized Riemann Hypothesis implies that such L-functions have no zeros near $s = 1$. In 1935, Siegel proved the strongest known upper bound for the largest such real zero, but his result is vastly inferior to what is known unconditionally for other L-functions. We exponentially improve Siegel’s bound under a mild hypothesis that permits real zeros to lie close to $s = 1$. Our hypothesis can be verified for almost all primitive real characters. Our work extends to other families of L-functions. This is joint work with Jesse Thorner and Alexandru Zaharescu.

Additional Files: