Agent-based modelling and topological data analysis of zebrafish patterns

Speaker: Bjorn Sandstede

Date: Wed, Sep 21, 2022

Location: PIMS, University of British Columbia, Online, Zoom

Conference: Mathematical Biology Seminar

Subject: Mathematics, Mathematical Biology

Class: Scientific

Abstract:

Patterns are widespread in nature and often form during early development due to the self-organization of cells or other independent agents. One example are zebrafish (Danio rerio): wild-type zebrafish have regular black and gold stripes, while mutants and other fish feature spotty and patchy patterns. Qualitatively, these patterns display impressive consistency and redundancy, yet variability inevitably exists on both microscopic and macroscopic scales. I will first discuss an agent-based model that suggests that both consistency and richness of patterning on zebrafish stems from the presence of redundancy in iridophore interactions. In the second part of my talk, I will focus on how we can quantify features and variability of patterns to facilitate predictive analyses. I will discuss an approach based on topological data analysis for quantifying both agent-level features and global pattern attributes on a large scale. The proposed methodology is able to quantify the differential impact of stochasticity in cell interactions on wild-type and mutant patterns and predicts stripe and spot statistics as a function of varying cellular communication. This is joint work with Alexandria Volkening and Melissa McGuirl.