L-Functions in Analytic Number Theory

Date: 
Thursday, October 13, 2022 - 14:00

Zeros of linear combinations of L-functions near the critical line

Speaker: 
Youness Lamzouri
Date: 
Wed, Jan 11, 2023
Location: 
PIMS, University of Lethbridge
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

In this talk, I will present a recent joint work with Yoonbok Lee, where we investigate the number of zeros of linear combinations of $L$-functions in the vicinity of the critical line. More precisely, we let $L_1, \dots, L_J$ be distinct primitive $L$-functions belonging to a large class (which conjecturally contains all $L$-functions arising from automorphic representations on $\text{GL}(n)$), and $b_1, \dots, b_J$ be real numbers. Our main result is an asymptotic formula for the number of zeros of $F(\sigma+it)=\sum_{j\leq J} b_j L_j(\sigma+it)$ in the region $\sigma\geq 1/2+1/G(T)$ and $t\in [T, 2T]$, uniformly in the range $\log \log T \leq G(T)\leq (\log T)^{\nu}$, where $\nu\asymp 1/J$. This establishes a general form of a conjecture of Hejhal in this range. The strategy of the proof relies on comparing the distribution of $F(\sigma+it)$ to that of an associated probabilistic random model.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar?authuser=0

Class: 

A walk on Legendre paths

Speaker: 
Youness Lamzouri
Date: 
Mon, Jan 9, 2023
Location: 
PIMS, University of Lethbridge
Conference: 
ULethbridge Distinguished Speaker Series
Abstract: 

The Legendre symbol is one of the most basic, mysterious and extensively studied objects in number theory. It is a multiplicative function that encodes information about whether an integer is a square modulo an odd prime p. The Legendre symbol was introduced by Adrien-Marie Legendre in 1798, and has since found countless applications in various areas of mathematics as well as in other fields including cryptography. In this talk, we shall explore what we call "Legendre paths", which encode information about the values of the Legendre symbol. The Legendre path modulo p is defined as the polygonal path in the plane formed by joining the partial sums of the Legendre symbol modulo p. In particular, we will attempt to answer the following questions as we vary over the primes p: how are these paths distributed? how do their maximums behave? and what proportion of the path is above the real axis? Among our results, we prove that these paths converge in law, in the space of continuous functions, to a certain random Fourier series constructed using Rademakher random multiplicative functions. Part of this work is joint with Ayesha Hussain.

Class: 

Negative moments of the Riemann zeta-function

Speaker: 
Alexandra Florea
Date: 
Mon, Dec 5, 2022
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
Lethbridge Number Theory and Combinatorics Seminar
Abstract: 

Alexandra Florea (University of California Irvine, USA)

I will talk about recent work towards a conjecture of Gonek regarding negative shifted moments of the Riemann zeta-function. I will explain how to obtain asymptotic formulas when the shift in the Riemann zeta function is big enough, and how we can obtain non-trivial upper bounds for smaller shifts. I will also discuss some applications to the question of obtaining cancellation of averages of the Mobius function. Joint work with H. Bui.

Class: 

The value distribution of the Hurwitz zeta function with an irrational shift

Speaker: 
Anurag Sahay
Date: 
Thu, Dec 1, 2022
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

The Hurwitz zeta function $\zeta(s, \alpha)$ is a shifted integer analogue of the Riemann zeta function which shares many of its properties, but is not an ”L-function” under any reasonable definition of the word. We will first review the basics of the value distribution of the Riemann zeta function in the critical strip (moments, Bohr–Jessen theory...) and then contrast it with the value distribution of the Hurwitz zeta function.

Our focus will be on shift parameters $\alpha / \in \mathbb{Q}$, i.e., algebraic irrational or transcendental. We will present a new result (joint with Winston Heap) on moments of these objects on the critical line.

Class: 

Quadratic Twists of Modular L-functions

Speaker: 
Xiannan Li
Date: 
Thu, Nov 3, 2022
Location: 
PIMS, University of Lethbridge
Online
Zoom
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

The behavior of quadratic twists of modular L-functions at the critical point is related both to coefficients of half integer weight modular forms and data on elliptic curves. Here we describe a proof of an asymptotic for the second moment of this family of L-functions, previously available conditionally on the Generalized Riemann Hypothesis by the work of Soundararajan and Young. Our proof depends on deriving
an optimal large sieve type bound.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar

Class: 

Moments and Periods for GL(3)

Speaker: 
Chung-Hang (Kevin) Kwan
Date: 
Thu, Oct 20, 2022
Location: 
PIMS, University of Lethbridge
Zoom
Online
Abstract: 

In the past century, the studies of moments of L-functions have been important in number theory and are well-motivated by a variety of arithmetic applications. This talk will begin with two problems in elementary number theory, followed by a survey of techniques in the past and the present. We will slowly move towards the perspectives of period integrals which will be used to illustrate the interesting structures behind moments. In particular, we shall focus on the “Motohashi phenomena”.

Class: 

Extreme Values of the Riemann Zeta Function and Dirichlet L-functions at the Critical Points of the Zeta Function

Speaker: 
Shashank Chorge
Date: 
Thu, Oct 13, 2022
Location: 
PIMS, University of Lethbridge
Zoom
Abstract: 

We compute extreme values of the Riemann Zeta function at the critical points of the zeta function in the critical strip. i.e. the points where $\zeta'(s) = 0$ and $\mathfrak{R}s< 1.$. We show that the values taken by the zeta function at these points are very similar to the extreme values taken without any restrictions. We will show geometric significance of such points.

We also compute extreme values of Dirichlet L-functions at the critical points of the zeta function, to the right of $\mathfrak{R}s=1$. It shows statistical independence of L-functions and zet function in a certain way as these values are very similar to the values taken by L-functions without any restriction.

Class: 

Multiplicative functions in short intervals

Speaker: 
Paranedu Darbar
Date: 
Thu, Oct 6, 2022
Location: 
PIMS, University of British Columbia
PIMS, University of Lethbridge
PIMS, University of Northern British Columbia
Zoom
Online
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

In this talk, we are interested in a general class of multiplicative functions. For a function that belongs to this class, we will relate its “short average” to its “long average”. More precisely, we will compute the variance of such a function over short intervals by using Fourier analysis and by counting rational points on certain binary forms. The discussion is applicable to some interesting multiplicative functions such as

$$
\mu_k(n), \frac{\phi (n)}{n}, \frac{n}{\phi (n)}, \mu^2(n)\frac{\phi(n)}{n},
\sigma_\alpha (n), (-1)^{\#\left\{p: p^k | n \right\}}
$$

and many others and it provides various new results and improvements to the previous result
in the literature. This is a joint work with Mithun Kumar Das.

 

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar

Class: 

Joint value distribution of L-functions

Speaker: 
Junxian Li
Date: 
Thu, Sep 22, 2022
Location: 
PIMS, University of British Columbia
PIMS, University of Lethbridge
PIMS, University of Northern British Columbia
Zoom
Online
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

It is believed that distinct primitive L-functions are “statistically independent”. The independence can be interpreted in many different ways. We are interested in the joint value distributions and their applications in moments and extreme values for distinct L-functions. We discuss some large deviation estimates in Selberg and Bombieri-Hejhal’s central limit theorem for values of several L-functions. On the critical line, values of distinct primitive L-functions behave independently in a strong sense. However, away from the critical line, values of distinct Dirichlet L-functions begin to exhibit some correlations.

This is based on joint works with Shota Inoue.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar

Class: 

Moments of the Hurwitz zeta function

Speaker: 
Anurag Sahay
Date: 
Fri, Jul 29, 2022
Location: 
PIMS, University of Northern British Columbia
Conference: 
Moments of L-functions Workshop
Abstract: 

The Hurwitz zeta function is a shifted integer analogue of the Riemann zeta function, for shift parameters $0<\alpha\leqslant 1$. We consider the integral moments of the Hurwitz zeta function on the critical line $\Re(s)=\frac12$. We focus on rational $\alpha$. In this case, the Hurwitz zeta function decomposes as a linear combination of Dirichlet $L$-functions, which leads us into investigating moments of products of $L$-functions. Using heuristics from random matrix theory, we conjecture an asymptotic of the same form as the moments of the Riemann zeta function. If time permits, we will discuss the case of irrational shift parameters $\alpha$, which will include some joint work with Winston Heap and Trevor Wooley and some ongoing work with Heap.

Class: 

Pages