L-Functions in Analytic Number Theory

Date: 
Thursday, October 13, 2022 - 14:00

Conditional estimates for logarithms and logarithmic derivatives in the Selberg class

Speaker: 
Neea Palojärvi
Date: 
Mon, Oct 16, 2023
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
Analytic Aspects of L-functions and Applications to Number Theory
Abstract: 

The Selberg class consists of functions sharing similar properties to the Riemann zeta function. The Riemann zeta function is one example of the functions in this class. The estimates for logarithms of Selberg class functions and their logarithmic derivatives are connected to, for example, primes in arithmetic progressions.
In this talk, I will discuss about effective and explicit estimates for logarithms and logarithmic derivatives of the Selberg class functions when Re(s) ≥ 1/2+ where

Class: 

An explicit estimate on the mean value of the error in the prime number theorem in intervals

Speaker: 
Michaela Cully-Hugill
Date: 
Tue, Oct 3, 2023
Location: 
PIMS, University of Lethbridge
Online
Conference: 
Analytic Aspects of L-functions and Applications to Number Theory
Abstract: 

The prime number theorem (PNT) gives us the density of primes amongst the natural numbers. We can extend this idea to consider whether we have the asymptotic number of primes predicted by the PNT in a given interval. Currently, this has only been proven for sufficiently large intervals. We can also consider whether the PNT holds for sufficiently large intervals ‘on average’. This requires estimating the mean-value of the error in the PNT in intervals. A new explicit estimate for this will be given based on the work of Selberg in 1943, along with two applications: one for primes in intervals, and one for Goldbach numbers in intervals.

Class: 
Subject: 

Sign changes of the error term in the Piltz divisor problem

Speaker: 
Cruz Castillo
Date: 
Mon, Sep 25, 2023
Location: 
PIMS, University of Lethbridge
Online
Conference: 
Analytic Aspects of L-functions and Applications to Number Theory
Abstract: 

For an integer k≥3; Δk (x) :=∑n≤xdk(n)-Ress=1 (ζk(s)xs/s), where dk(n) is the k-fold divisor function, and ζ(s) is the Riemann zeta-function. In the 1950's, Tong showed for all large enough X; Δk(x) changes sign at least once in the interval [X, X + CkX1-1/k] for some positive constant Ck. For a large parameter X, we show that if the Lindelöf hypothesis is true, then there exist many disjoint subintervals of [X, 2X], each of length X1-1/k-ε such that Δk (x) does not change sign in any of these subintervals. If the Riemann hypothesis is true, then we can improve the length of the subintervals to << X1-1/k (logX)-k^2-2. These results may be viewed as higher-degree analogues of a theorem of Heath-Brown and Tsang, who studied the case k = 2. This is joint work with Siegfred Baluyot.

Class: 

The second moment of symmetric square L-functions over Gaussian integers

Speaker: 
Olga Balkanova
Date: 
Wed, Apr 5, 2023
Location: 
PIMS, University of Lethbridge
Abstract: 

We prove an explicit formula for the first moment of Maass form symmetric square L-functions defined over Gaussian integers. As a consequence, we derive a new upper bound for the second moment. This is joint work with Dmitry Frolenkov.

Class: 

Exceptional Chebyshev's bias over finite fields

Speaker: 
Alexandre Bailleul
Date: 
Wed, Mar 22, 2023
Location: 
PIMS, University of Lethbridge
Online
Zoom
Abstract: 

Chebyshev's bias is the surprising phenomenon that there is usually more primes of the form 4n+3 than of the form 4n+1 in initial intervals of the natural numbers. More generally, following work from Rubinstein and Sarnak, we know Chebyshev's bias favours primes that are not squares modulo a fixed integer q compared to primes which are squares modulo q. This phenomenon also appears over finite fields, where we look at irreducible polynomials modulo a fixed polynomial M. However, in the finite field case, there are a few known exceptions to this phenomenon, appearing as a result of multiplicative relations between zeroes of certain L-functions. In this work, we show, improving on earlier work by Kowalski, that those exceptions are rare. This is joint work with L. Devin, D. Keliher and W. Li.

Class: 

Euler's divergent series and primes in arithmetic progressions

Speaker: 
Anne-Maria Ernvall-Hytönen
Date: 
Wed, Mar 8, 2023
Location: 
PIMS, University of Lethbridge
Online
Zoom
Conference: 
Analytic Aspects of L-functions and Applications to Number Theory
Abstract: 

Euler's divergent series $\sum_{n>0} n!z^n$ which converges only for $z = 0$ becomes an interesting object when evaluated with respect to a p-adic norm (which will be introduced in the talk). Very little is known about the values of the series. For example, it is an open question whether the value at one is irrational (or even non-zero). As individual values are difficult to reach, it makes sense to try to say something about collections of values over sufficiently large sets of primes. This leads to looking at primes in arithmetic progressions, which is in turn raises a need for an explicit bound for the number of primes in an arithmetic progression under the generalized Riemann hypothesis.
During the talk, I will speak about both sides of the story: why we needed good explicit bounds for the number of primes in arithmetic progressions while working with questions about irrationality, and how we then proved such a bound.

The talk is joint work with Tapani Matala-aho, Neea Palojärvi and Louna Seppälä. (Questions about irrationality with T. M. and L. S. and primes in arithmetic progressions with N. P.)

Class: 

A new explicit bound for the Riemann zeta function

Speaker: 
Ghaith Hiary
Date: 
Wed, Mar 1, 2023
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
Analytic Aspects of L-functions and Applications to Number Theory
Abstract: 

I give a new explicit bound for the Riemann zeta function on the critical line. This is joint work with Dhir Patel and Andrew Yang. The context of this work highlights the importance of reliability and reproducibility of explicit bounds in analytic number theory.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar

Class: 

A logarithmic improvement in the Bombieri-Vinogradov theorem

Speaker: 
Alisa Sedunova
Date: 
Wed, Feb 8, 2023
Location: 
PIMS, University of Lethbridge
Abstract: 

We improve the best known to date result of Dress-Iwaniec-Tenenbaum, getting ($\log
x)^2$ instead of $\left(log x\right)^(5/2)$. We use a weighted form of Vaughan's identity, allowing a smooth truncation inside the procedure, and an estimate due to Barban-Vehov and Graham related to Selberg's sieve. We give effective and non-effective versions of the result.

This event is part of the PIMS CRG Group on L-Functions in Analytic Number Theory. More details can be found on the webpage here: https://sites.google.com/view/crgl-functions/crg-weekly-seminar?authuser=0

Class: 

An explicit error term in the prime number theorem for large x

Speaker: 
Daniel Johnston
Date: 
Wed, Jan 25, 2023
Location: 
PIMS, University of Lethbridge
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

In 1896, the prime number theorem was established, showing that π(x) ∼ li(x). Perhaps the most widely used estimates in explicit analytic number theory are bounds on |π(x)-li(x)| or the related error term |θ(x)-x|. In this talk we discuss methods one can use to obtain good bounds on these error terms when x is large. Moreover, we will explore the many ways in which these bounds could be improved in the future.

Class: 

Least quadratic non-residue and related problems

Speaker: 
Enrique Treviño
Date: 
Wed, Jan 18, 2023
Location: 
PIMS, University of Lethbridge
Zoom
Online
Conference: 
L-Functions in Analytic Number Theory Seminar
Abstract: 

TBA

Class: 

Pages