Pro-p Iwahori Invariants
Date: Thu, Mar 21, 2024
Location: PIMS, University of British Columbia, Online
Conference: UBC Number Theory Seminar
Subject: Mathematics, Number Theory
Class: Scientific
Abstract:
Let $F$ be the field of $p$-adic numbers (or, more generally, a non-
archimedean local field) and let $G$ be $\mathrm{GL}_n(F)$ (or, more generally,
the group of $F$-points of a split connected reductive group). In the
framework of the local Langlands program, one is interested in studying
certain classes of representations of $G$ (and hopefully in trying to match
them with certain classes of representations of local Galois groups).
In this talk, we are going to focus on the category of smooth representations
of $G$ over a field $k$. An important tool to investigate this category is
given by the functor that, to each smooth representation $V$, attaches its
subspace of invariant vectors $V^I$ with respect to a fixed compact open
subgroup $I$ of $G$. The output of this functor is actually not just a $k$-
vector space, but a module over a certain Hecke algebra. The question we are
going to attempt to answer is: how much information does this functor preserve
or, in other words, how far is it from being an equivalence of categories? We
are going to focus, in particular, on the case that the characteristic of $k$
is equal to the residue characteristic of $F$ and $I$ is a specific subgroup
called "pro-$p$ Iwahori subgroup".