Equidistribution of some families of short exponential sums

Speaker: Théo Untrau

Date: Thu, Jan 18, 2024

Location: PIMS, University of British Columbia

Conference: UBC Number Theory Seminar

Subject: Mathematics, Number Theory

Class: Scientific


Exponential sums play a role in many different problems in number theory. For instance, Gauss sums are at the heart of some early proofs of the quadratic reciprocity law, while Kloosterman sums are involved in the study of modular and automorphic forms. Another example of application of exponential sums is the circle method, an analytic approach to problems involving the enumeration of integer solutions to certain equations. In many cases, obtaining upper bounds on the modulus of these sums allow us to draw conclusions, but once the modulus has been bounded, it is natural to ask the question of the distribution of exponential sums in the region of the complex plane in which they live. After a brief overview of the motivations mentioned above, I will present some results obtained with Emmanuel Kowalski on the equidistribution of exponential sums indexed by the roots modulo p of a polynomial with integer coefficients.