L-Functions in Analytic Number Theory

Date: 
Thursday, October 13, 2022 - 14:00

Subconvexity for GL(2) L-functions and Shifted MDS

Speaker: 
Henry Twiss
Date: 
Wed, Oct 30, 2024
Location: 
PIMS, University of Northern British Columbia
Online
Zoom
Abstract: 

Subconvexity problems have maintained extreme interest in analytic number theory for decades. Critical barriers such as the convexity, Burgess, and Weyl bounds hold particular interest because one usually needs to drastically adjust the analytic techniques involved in order to break through them. It has recently come to light that shifted Dirichlet series can be used to obtain subconvexity results. While these Dirichlet series do not admit Euler products, they are amenable to study via spectral methods. In this talk, we construct a shifted multiple Dirichlet series (MDS) and leverage its analytic continuation via spectral decompositions to obtain the Weyl bound in the conductor-aspect for the L-function of a holomorphic cusp form twisted by an arbitrary Dirichlet character. This improves upon the corresponding bound for quadratic characters obtained by Iwaniec-Conrey in 2000. This work is joint with Jeff Hoffstein, Nikos Diamantis, and Min Lee.

Class: 

Moments of real Dirichlet L-functions and multiple Dirichlet series

Speaker: 
Martin Čech
Date: 
Wed, Oct 23, 2024
Location: 
PIMS, University of Northern British Columbia
Zoom
Online
Abstract: 

There are two ways to compute moments in families of L-functions: one uses the approximation by Dirichlet polynomials, and the other is based on multiple Dirichlet series. We will introduce the two methods to study the family of real Dirichlet L-functions, compare them and show that they lead to the same results. We will then focus on obtaining the meromorphic continuation of the associated multiple Dirichlet series.

Class: 

A Study of Twisted Sums of Arithmetic Functions

Speaker: 
Saloni Sinha
Date: 
Tue, Oct 15, 2024
Location: 
PIMS, University of British Columbia
Online
Zoom
Abstract: 

We study sums of the form $\sum_{n\leq x} f(n) n^{-iy}$, where $f$ is an arithmetic function, and we establish an equivalence between the Riemann Hypothesis and estimates on these sums. In this talk, we will explore examples of such sums with specific arithmetic functions, as well as discuss potential implications and future research directions.

Class: 

Hybrid Statistics of the Maxima of a Random Model of the Zeta Function over Short Intervals

Speaker: 
Christine K. Chang
Date: 
Tue, Oct 8, 2024
Location: 
PIMS, University of British Columbia
Zoom
Online
Abstract: 

We will present a matching upper and lower bound for the right tail
probability of the maximum of a random model of the Riemann zeta function over
short intervals. In particular, we show that the right tail interpolates
between that of log-correlated and IID random variables as the interval varies
in length. We will also discuss a new normalization for the moments over short
intervals. This result follows the recent work of Arguin-Dubach-Hartung and is inspired by a conjecture by Fyodorov-Hiary-Keating on the local maximum over
short intervals.

Class: 

Remarks on a formula of Ramanujan

Speaker: 
Andrés Chirre
Date: 
Tue, Sep 24, 2024
Location: 
PIMS, University of British Columbia
Abstract: 

In this talk, we will discuss a well-known formula of Ramanujan and its relationship with the partial sums of the Möbius function. Under some conjectures, we analyze a finer structure of the involved terms. It is a joint work with Steven M. Gonek (University of Rochester).

Class: 

Explicit zero-free regions or the Riemann zeta-function for large t

Speaker: 
Andrew Yang
Date: 
Tue, Oct 1, 2024
Location: 
PIMS, University of British Columbia
Abstract: 

A zero-free region of the Riemann zeta-function is a subset of the
complex plane where the zeta-function is known to not vanish. In this talk we
will discuss various computational and analytic techniques used to enlarge the
zero-free region for the Riemann zeta-function, when the imaginary part of a
complex zero is large. We will also explore the limitations of currently known
approaches. This talk will reference a number of works from the literature,
including a joint work with M. Mossinghoff and T. Trudgian.

Class: 

Almost periodicity and large oscillations of prime counting functions

Speaker: 
Jan-Christoph Schlage-Puchta
Date: 
Fri, Jun 21, 2024
Location: 
PIMS, University of British Columbia
Conference: 
Comparative Prime Number Theory
Abstract: 

If we assume the relevant Riemann hypotheses, after a suitable rescaling many functions counting certain primes become almost periodic. There are different notion of almost periodicity in use; here we consider the notion induced by the norm $||f|| = \sup_{x∈\mathbb{R}} \int_x^{x+1} |f(t)|^2\,dt$. We show that if a function $f$ can be approximated by linear combinations of periodic functions with respect to this norm, then the level sets $\left\{x: f(x) \geq t\right\}$ are almost periodic for all real $t$ with at most countably many exceptions. We also compare this notion to other notions of almost periodicity in use.

Please note, the wrong video feed was captured for this lecture so the writing on the blackboard is not legible.

Class: 

A race problem arising from elliptic curves

Speaker: 
Kin Ming Tsang
Date: 
Fri, Jun 21, 2024
Location: 
PIMS, University of British Columbia
Conference: 
Comparative Prime Number Theory
Abstract: 

Given an elliptic curve $E/\mathbb{Q}$, we can consider its trace of Frobenius, denoted as $a_p(E)$, where $p$ is a prime. We will discuss the race problem arising from these ap values and the general strategy in attacking these problems.

Class: 

Ramanujan sums and the Hardy–Littlewood prime tuple conjecture

Speaker: 
Shivani Goel
Date: 
Fri, Jun 21, 2024
Location: 
PIMS, University of British Columbia
Conference: 
Comparative Prime Number Theory
Abstract: 

In 1999, Gadiyar and Padma discovered a simple heuristic to derive the generalized twin prime conjecture using an orthogonality principle for Ramanujan sums originally discovered by Carmichael. We derive a limit formula for higher convolutions of Ramanujan sums, generalizing an old result of Carmichael. We then apply this in conjunction with the general theory of arithmetical functions of several variables to give a heuristic derivation of the Hardy–Littlewood formula for the number of prime $k$-tuples less than $x$.

Class: 

Number theory versus random matrix theory: the joint moments story

Speaker: 
Andrew Pearce-Crump
Date: 
Fri, Jun 21, 2024
Location: 
PIMS, University of British Columbia
Conference: 
Comparative Prime Number Theory
Abstract: 

It has been known since the 80s, thanks to Conrey and Ghosh, that the average of the square of the Riemann zeta function, summed over the extreme points of zeta up to a height $T$, is $\frac{1}{2}(e^2 −5)\log T$ as $T\rightarrow \infty$. This problem and its generalisations are closely linked to evaluating asymptotics of joint moments of the zeta function and its derivatives, and for a time was one of the few cases in which Number Theory could do what Random Matrix Theory could not. RMT then managed to retake the lead in calculating these sorts of problems, but we may now tell the story of how Number Theory is fighting back, and in doing so, describe how to find a full asymptotic expansion for this problem, the first of its kind for any nontrivial joint moment of the Riemann zeta function. This is joint work with Chris Hughes and Solomon Lugmayer

Class: 

Pages