A planar set that contains a unit segment in every direction is called a Kakeya set. These sets have been studied intensively in geometric measure theory and harmonic analysis since the work of Besicovich (1928); we find a new connection to game theory and probability. A hunter and a rabbit move on an n-vertex cycle without seeing each other until they meet. At each step, the hunter moves to a neighboring vertex or stays in place, while the rabbit is free to jump to any node. Thus they are engaged in a zero sum game, where the payoff is the capture time. We show that every rabbit strategy yields a Kakeya set; the optimal rabbit strategy is based on a discretized Cauchy random walk, and it yields a Kakeya set K consisting of 4n triangles, that has minimal area among such Kakeya sets. Passing to the scaling limit yields a simple construction of a random Kakeya set with zero area from two Brownian motions. (Talk based on joint work withY. Babichenko, R. Peretz, P. Sousi and P. Winkler).
When Colombus left Spain in 1492, sailing West, he knew that the Earth was round and was expecting to land in Japan. Seventeen centuries earlier, around 200 BC, Eratosthenes had shown that its circumference was 40,000 km, just by a smart use of mathematics, without leaving his home town of Alexandria. Since then, we have learned much more about Earth: it is a planet, it has an inner structure, it carries life , and at every step mathematics have been a crucial tool of discovery and understanding. Nowadays, concerns about the human footprint and climate change force us to bring all this knowledge to bear on the global problems facing us. This is the last challenge for mathematics: can we control change?
This is a two-part lecture, investigating how our idea of the world has influenced the development of mathematics. In the first lecture on July 15, I will describe the situation up to the twentieth century, in the second one on July 17 I will follow up to the present time and the global challenges humanity and the planet are facing today.
When Colombus left Spain in 1492, sailing West, he knew that the Earth was round and was expecting to land in Japan. Seventeen centuries earlier, around 200 BC, Eratosthenes had shown that its circumference was 40,000 km, just by a smart use of mathematics, without leaving his home town of Alexandria. Since then, we have learned much more about Earth: it is a planet, it has an inner structure, it carries life , and at every step mathematics have been a crucial tool of discovery and understanding. Nowadays, concerns about the human footprint and climate change force us to bring all this knowledge to bear on the global problems facing us. This is the last challenge for mathematics: can we control change?
This is a two-part lecture, investigating how our idea of the world has influenced the development of mathematics. In the first lecture (July 15), I will describe the situation up to the twentieth century, in the second one (July 17) I will follow up to the present time and the global challenges humanity and the planet are facing today.
The aim of the conference is to bring together researchers in a range of fields within stochastic analysis from all over the world, to survey recent developments, exchange ideas and to foster future collaborations. The main topics include stochastic partial differential equations, measure valued processes, random walks in random media, Dirichlet forms and diffusions on fractals. We will focus on the common theme of developing new foundational methods which will be useful to various areas within stochastic analysis as well as to problems motivated by