The presentation will take us along the road to the ozone standard for the United States, announced in Mar 2008 by the US Environmental Protection Agency, and then the new proposal in 2014. That agency is responsible for monitoring that nation’s air quality standards under the Clean Air Act of 1970. I will describe how I, a Canadian statistician, came to serve on the US Clean Air Scientific Advisory Committee (CASAC) for Ozone that recommended the standard and my perspectives on the process of developing it. I will introduce the rich cast of players involved including the Committee, the EPA staff, “blackhats,” “whitehats,” “gunslingers,” politicians and an unrevealed character waiting in the wings who appeared onstage only as the 2008 standards had been formulated. And we will encounter a couple of tricky statistical problems that arose along with approaches, developed by the speaker and his coresearchers, which could be used to address them. The first was about how a computational model based on things like meteorology could be combined with statistical models to infer a certain unmeasurable but hugely important ozone level, the “policy related background level” generated by things like lightning, below which the ozone standard could not go. The second was about estimating the actual human exposure to ozone that may differ considerably from measurements taken at fixed site monitoring locations. Above all, the talk will be a narrative about the interaction between science and public policy - in an environment that harbors a lot of stakeholders with varying but legitimate perspectives, a lot of uncertainty in spite of the great body of knowledge about ozone and above all, a lot of potential risk to human health and welfare.
Interesting mathematics arises in many areas of the study of sea ice and its role in climate. Partial differential equations, numerical analysis, dynamical systems and bifurcation theory, diffusion processes, percolation theory, homogenization and statistical physics represent a broad range of active fields in applied mathematics and theoretical physics which are relevant to important issues in climate science and the analysis of sea ice in particular.
Climate change has the potential to affect all of our lives. But is it really happening, and what has maths got to do with it?
In this talk I will take a light hearted view of the many issues concerned with predicting climate change and how mathematics and statistics can help make some sense of it all. Using audience participation I will look at the strengths and weaknesses of various climate models and we will see what the math can tell us about both the past and the future of the Earth's climate and how mathematical models can help in our future decision making.
Knowledge of atmospheric carbon dioxide (CO2) concentrations in the past are important to provide an understanding of how the Earth's carbon cycle varies over time. This project combines ice core CO2 concentrations, from Law Dome, Antarctica and a physically based forward model to infer CO2 concentrations on an annual basis. Here the forward model connects concentrations at given time to their depth in the ice core sample and an interesting feature of this analysis is a more complete characterization of the uncertainty in "inverting" this relationship. In particular, Monte Carlo based ensembles are particularly useful for assessing the size of the decrease in CO2 around 1600 AD. This reconstruction problem, also known as an inverse problem, is used to illustrate a general statistical approach where observational information is limited and characterizing the uncertainty in the results is important. These methods, known as Bayesian hierarchical models, have become a mainstay of data analysis for complex problems and have wide application in the geosciences. This work is in collaboration with Eugene Wahl (NOAA), David Anderson (NOAA) and Catherine Truding.
When Colombus left Spain in 1492, sailing West, he knew that the Earth was round and was expecting to land in Japan. Seventeen centuries earlier, around 200 BC, Eratosthenes had shown that its circumference was 40,000 km, just by a smart use of mathematics, without leaving his home town of Alexandria. Since then, we have learned much more about Earth: it is a planet, it has an inner structure, it carries life , and at every step mathematics have been a crucial tool of discovery and understanding. Nowadays, concerns about the human footprint and climate change force us to bring all this knowledge to bear on the global problems facing us. This is the last challenge for mathematics: can we control change?
This is a two-part lecture, investigating how our idea of the world has influenced the development of mathematics. In the first lecture on July 15, I will describe the situation up to the twentieth century, in the second one on July 17 I will follow up to the present time and the global challenges humanity and the planet are facing today.
When Colombus left Spain in 1492, sailing West, he knew that the Earth was round and was expecting to land in Japan. Seventeen centuries earlier, around 200 BC, Eratosthenes had shown that its circumference was 40,000 km, just by a smart use of mathematics, without leaving his home town of Alexandria. Since then, we have learned much more about Earth: it is a planet, it has an inner structure, it carries life , and at every step mathematics have been a crucial tool of discovery and understanding. Nowadays, concerns about the human footprint and climate change force us to bring all this knowledge to bear on the global problems facing us. This is the last challenge for mathematics: can we control change?
This is a two-part lecture, investigating how our idea of the world has influenced the development of mathematics. In the first lecture (July 15), I will describe the situation up to the twentieth century, in the second one (July 17) I will follow up to the present time and the global challenges humanity and the planet are facing today.
The eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. These present fundamental challenges for the statistical community, since the non-linear relationship between quantities we can observe and the response to a stabilization scenario makes estimates of the risks associated with any stabilization target acutely sensitive to the details of the analysis, prior selection etc. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario and hence less sensitive to underdetermined aspects of the analysis. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO2), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide induced warming of 2○C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9○C.
Summer School on Tropical Multiscale Convective Systems
Abstract:
• Climatology (What’s normal?)
• Basic properties of El Niño
• Linear Inverse Modeling
• Non-normal growth and the optimal structure
• Short scales: What constitutes stochastic forcing?
• Long scales: Connection between El Niño and the Pacific Decadal Oscillation