Atmospheric and Oceanic Physics: Climate Modelling

Equilibrium price in intraday electricity markets

Speaker: 
Huyên Pham
Date: 
Thu, Jul 27, 2023
Location: 
PIMS, University of British Columbia
Online
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

We formulate an equilibrium model of intraday trading in electricity markets. Agents face balancing constraints between their customers consumption plus intraday sales and their production plus intraday purchases. They have continuously updated forecast of their customers consumption at maturity. Forecasts are prone to idiosyncratic noise as well as common noise (weather). Agents production capacities are subject to independent random outages, which are each modeled by a Markov chain. The equilibrium price is defined as the price that minimizes trading cost plus imbalance cost of each agent and satisfies the usual market clearing condition. Existence and uniqueness of the equilibrium are proved, and we show that the equilibrium price and the optimal trading strategies are martingales. The main economic insights are the following. (i) When there is no uncertainty on generation, it is shown that the market price is a convex combination of forecasted marginal cost of each agent, with deterministic weights. Furthermore, the equilibrium market price is consistent with Almgren and Chriss's model, and we identify the fundamental part as well as the permanent market impact. It turns out that heterogeneity across agents is a necessary condition for Samuelson's effect to hold. We show that when heterogeneity lies only on costs, Samuelson's effect holds true. A similar result stands when heterogeneity lies only on market access quality. (ii) When there is production uncertainty only, we provide an approximation of the equilibrium for large number of players. The resulting price exhibits increasing volatility with time. (Joint work with Andrea Cosso and René Aïd)

Class: 

A Principal-Agent model for optimal Incentives in renewable investments

Speaker: 
René Aïd
Date: 
Thu, Jul 27, 2023
Location: 
PIMS, University of British Columbia
Online
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

We analyze the optimal regulatory incentives to foster the development of non-emissive electricity generation when the demand for power is served either by a one firm (monopoly) or by two interacting firms (competition). The regulator wishes to encourage green investments to limit carbon emissions, while simultaneously reducing intermittency of the total energy production. We find that the regulation of competing interacting firms is more efficient than the regulation of the monopoly situation as measured with the certainty equivalent of the principal’s value function. This higher efficiency is achieved thanks to a higher degree of freedom of the incentive mechanisms which involves cross-subsidies between firms. Joint work with Annika Kemper (Bielefeld University) and Nizar Touzi (Ecole Polytechnique).

Class: 

Renewable Energy Supply, Electricity Storage, and the Economics of Forecasting

Speaker: 
Werner Antweiler
Date: 
Wed, Jul 26, 2023
Location: 
PIMS, University of British Columbia
Online
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

Electricity markets balance an increasingly intermittent supply with price-inelastic demand, while climate change and electrification of mobility are contributing to transforming diurnal and seasonal demand patterns. Electricity systems face an increasing level of stochasticity, and market participants need to inform their dispatch decisions based on 24-hour price forecasts for participation in Day-Ahead Markets, which in turn depend on supply and demand forecasts. The arrival of grid-scale electricity storage is also creating new scope for prices forecasts, while smaller scale storage systems act as price takers. In the long term, large-scale deployment of grid-scale electricity storage has the potential of significantly reducing price variation through arbitrage, which could shift the “value added” of forecasting from short-term (intra-day) to long-term predictions, and from supporting operational (dispatch) decisions to supporting capacity (investment) decisions.

Class: 

Short-term wind forecasting using spatio-temporal covariance models

Speaker: 
Tianxia (Tylar) Jia
Date: 
Wed, Jul 26, 2023
Location: 
PIMS, University of British Columbia
Online
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

This talk introduces a methodology for improving short-term wind speed forecasting in Alberta. Regime-switching spatio-temporal covariance models are applied using two datasets: (1) large-scale reanalysis dataset containing large scale atmospheric information for atmospheric clustering using k-means and hidden Markov models; (2) wind speed data from 131 weather stations across Alberta are used to train and test the covariance models. The predictive performance is assessed for different models and clustering methods.

Class: 

Offshore wind forecasting and operations for the offshore wind energy areas in the U.S. Mid Atlantic

Speaker: 
Aziz Ezzat Ahmed
Date: 
Wed, Jul 26, 2023
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

The rising U.S. offshore wind sector holds great promise, both environmentally and economically, to unlock vast supplies of clean, domestic, and renewable energy. To harness this valuable resource, Gigawatt (GW)-scale offshore wind projects are already under way at several locations off of the U.S. coastline. This promising future, however, is still clouded with uncertainties on how to optimally manage those ultra-scale offshore wind assets, which would be operating under harsh environmental and operational conditions, in relatively under-explored territories, and at unprecedented scales. I will present some of our progress in formulating tailored forecasting and optimization models aimed at minimizing some of those uncertainties. Our models and analyses are largely tailored and tested using data from the U.S. Mid-Atlantic—where several GW-scale wind projects are currently under development.

Class: 

The role of wind speed variability in very long-term wind power forecasts

Speaker: 
Nina Effenberger
Date: 
Wed, Jul 26, 2023
Location: 
PIMS, University of British Columbia
Online
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

How much wind power will a turbine generate over its lifetime? To answer such questions, we can consider climate model output to generate very long-term wind power forecasts on the scale of years to decades. One major limitation of the data projected by climate models is their coarse temporal resolution that is usually not finer than three hours and can be as coarse as one month. However, wind speed distributions of low temporal resolution might not be able to account for high frequency variability which can lead to distributional shifts in the projected wind speeds. Even if these changes are small this can have a huge impact due to the highly non-linear relationship between wind and wind power and the long forecast horizons we consider. In my talk, I will discuss how the resolution of wind speed data from climate projections affects wind power forecasts.

Class: 

Multivariate forecasting in energy systems with a large share of renewables

Speaker: 
Jethro Browell
Date: 
Wed, Jul 26, 2023
Location: 
PIMS, University of British Columbia
Online
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

Forecasts of renewable power production and electricity demand for multiple time periods and/or spatial expanses are required to operate modern power systems. Furthermore, probabilistic forecasts are necessary to facilitate economic decision-making and risk management. This gives rise to the challenge of producing forecasts that capture dependency between variables, over time, and between multiple locations. The Gaussian Copula has been widely used for multivariate energy forecasting, including for wind power, and is readily scalable given that the entire dependency structure is described by a single covariance matrix; however, estimating this covariance matrix in high dimensional problems remains a research challenge. Furthermore, it has been found empirically that this covariance matrix is often non-stationary and evolves over time. Two methods are presented for parameterising covariance matrices to enable conditioning on explanatory variables and as a step towards more robust estimation.

We consider two approaches, one based on modelling the parameters of covariance functions using additive models, and the second modelling individual elements of the modified Cholesky decomposition, again using additive models. We show how this gives rise to a wide range of possible parametric structures and discuss model selection and estimation strategies. Finally, we demonstrate though two case studies the improvement in forecast quality that these methods yield, and the importance and value of capturing the dynamics of dependency structures in wind power forecasting and net-load forecasting in the presence of embedded renewables.

Class: 

A Concise Overview on State-of-the-Art Solar Resources and Forecasting

Speaker: 
Jan Kleissl
Date: 
Wed, Jul 26, 2023 to Thu, Jul 27, 2023
Location: 
PIMS, University of British Columbia
Online
Conference: 
PIMS-FACTS Workshop on Forecasting and Mathematical modeling for Renewable Energy
Abstract: 

The ability to forecast solar irradiance plays an indispensable role in solar power forecasting, which constitutes an essential step in planning and operating power systems under high penetration of solar power generation. Since solar radiation is an atmospheric process, solar irradiance forecasting, and thus solar power forecasting, can benefit from the participation of atmospheric scientists. In this talk, the two fields, namely, atmospheric science and power system engineering are jointly discussed with respect to how solar forecasting plays a part. Firstly, the state of affairs in solar forecasting is elaborated; some common misconceptions are clarified; and salient features of solar irradiance are explained. Next, five technical aspects of solar forecasting: (1) base forecasting methods, (2) post-processing, (3) irradiance-to-power conversion, (4) verification, and (5) grid-side implications, are reviewed. Following that, ten research topics moving into the future are enumerated; they are related to (1) data and tools, (2) numerical weather prediction, (3) forecast downscaling, (4) large eddy simulation, (5) dimming and brightening, (6) aerosols, (7) spatial forecast verification, (8) multivariate probabilistic forecast verification, (9) predictability, and (10) extreme weather events. Last but not least, a pathway towards ultra-high PV penetration is laid out, based on a recently proposed concept of firm generation and forecasting.

Class: 

Thunderstorms in the present, past and future

Speaker: 
Courtney Schumacher
Date: 
Wed, Mar 23, 2022
Location: 
PIMS, University of Victoria
Online
Zoom
Conference: 
PIMS-UVic Distinguished Colloquium
Abstract: 
  • What do thunderstorms look like on the inside?
  • Were they any different 30 to 50 thousand years ago?
  • How might they change in the next 100 years as global temperatures continue to rise?

The presentation will start with how a thunderstorm looks in 3-D using radar technology and lightning mapping arrays. We will then travel tens of thousands of years into the past using chemistry analysis of cave stalactites in Texas to see how storms behaved as the climate underwent large shifts in temperature driven by glacial variability. I will end the talk with predictions of how lightning frequency may change over North America by the end of the century using numerical models run on supercomputers, and the potential impacts to humans and ecosystems.

Class: 

Using Observations to Accurately and Efficiently Model Turbulent Flows: Parameter Recovery, Sensitivity Analysis, Nonlinear Data Assimilation Algorithms, and a Real-World Implementation.

Speaker: 
Elizabeth Carlson
Date: 
Wed, Sep 29, 2021
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract: 

One of the challenges of the accurate simulation of turbulent flows is that initial data is often incomplete. Data assimilation circumvents this issue by continually incorporating the observed data into the model. A new approach to data assimilation known as the Azouani-Olson-Titi algorithm (AOT) introduced a feedback control term to the 2D incompressible Navier-Stokes equations (NSE) in order to incorporate sparse measurements. The solution to the AOT algorithm applied to the 2D NSE was proven to converge exponentially to the true solution of the 2D NSE with respect to the given initial data. In this talk, we present our tests on the robustness, improvements, and implementation of the AOT algorithm, as well as generate new ideas based off of these investigations. First, we discuss the application of the AOT algorithm to the 2D NSE with an incorrect parameter and prove it still converges to the correct solution up to an error determined by the error in the parameters. This led to the development of a simple parameter recovery algorithm, whose convergence we recently proved in the setting of the Lorenz equations. The implementation of this algorithm led us to provide rigorous proofs that solutions to the corresponding sensitivity equations are in fact the Fréchet derivative of the solutions to the original equations. Next, we present a proof of the convergence of a nonlinear version of the AOT algorithm in the setting of the 2D NSE, where for a portion of time the convergence rate is proven to be double exponential. Finally, we implement the AOT algorithm in the large scale Model for Prediction Across Scales - Ocean model, a real-world climate model, and investigate the effectiveness of the AOT algorithm in recovering subgrid scale properties.

Speaker Biography

Elizabeth Carlson, is a homeschooler turned math PhD! She grew up in Helena, MT, USA, where she also graduated from Carroll College with a Bachelor's in mathematics and minor in physics. She became interested in fluid dynamics as an undergraduate, and followed this interest through her graduate work at the University of Nebraska - Lincoln in Lincoln, NE, USA, where she just earned my PhD in May 2021. Her research focus is in fluid dynamics, focusing on the well-posedness of systems of partial differential equations and numerical computations and analysis in fluid dynamics. In her free time, she enjoys hiking, playing piano, reading, and martial arts.

Read more about Elizabeth Carlson on our PIMS Medium blog here.

Class: 

Pages