Scientific

Representation stability and configurations of disks in a strip

Speaker: 
Hannah Alpert
Date: 
Sun, Sep 27, 2020
Location: 
Zoom
Conference: 
Cascade Toplogy Seminar
Abstract: 

Representation stability, formalized in 2012 by Church, Ellenberg, and Farb, is a property exhibited by the homology of the configuration space of points in the plane: even as the number of points goes to infinity, the jth homology is generated by cycles in which at most 2j of the points move. What about the configuration space of disks of width 1 in an infinite strip of width w? This disks in a strip space behaves more like the no-k-equal configuration space of the line, where k-1 but not k points may be collocated; we show that the homology of this no-k-equal space exhibits generalized representation stability as defined by Sam–Snowden and Ramos. The method is to compute homology combinatorially using discrete Morse theory. Unlike other examples of homology with generalized representation stability, here the asymptotic behavior depends on the degree of homology.

Class: 

Symmetric knots and the equivariant 4-ball genus

Speaker: 
Ahmad Issa
Date: 
Sat, Sep 26, 2020
Location: 
Zoom
Conference: 
Cascade Toplogy Seminar
Abstract: 

Given a knot K in the 3-sphere, the 4-genus of K is the minimal genus of an orientable surface embedded in the 4-ball with boundary K. If the knot K has a symmetry (e.g., K is periodic or strongly invertible), one can define the equivariant 4-genus by only minimising the genus over those surfaces in the 4-ball which respect the symmetry of the knot. I'll discuss ongoing work with Keegan Boyle trying to understand the equivariant 4-genus.

Class: 

Enumerative geometry via the A^1-degree

Speaker: 
Sabrina Pauli
Date: 
Sat, Sep 26, 2020
Location: 
Zoom
Conference: 
Cascade Toplogy Seminar
Abstract: 

Morel's $A^1$ -degree in $A^1$-homotopy theory is the analog of the Brouwer degree in classical topology. It takes values in the Grothendieck-Witt ring $GW(k)$ of a field $k$, that is the group completion of isometry classes of non-degenerate symmetric bilinear forms. We can use the $A^1$ -degree to count algebro-geometric objects in $GW(k)$, giving an $A^1$-enumerative geometry over non-algebraically closed fields. Taking the rank and the signature recovers classical counts over the complex and the real numbers, respectively. For example, the count of lines on a smooth cubic surface enriched in $GW(k)$ has rank 27 and signature 3.

Class: 

Random discrete surfaces

Speaker: 
Thomas Budzinski
Date: 
Wed, Sep 23, 2020
Location: 
Zoom
PIMS, University of British Columbia
Conference: 
Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract: 

A triangulation of a surface is a way to divide it into a finite number of triangles. Let us pick a random triangulation uniformly among all those with a fixed size and genus. What can be said about the behaviour of these random geometric objects when the size gets large? We will investigate three different regimes: the planar case, the regime where the genus is not constrained, and the one where the genus is proportional to the size. Based on joint works with Baptiste Louf, Nicolas Curien and Bram Petri.

Class: 

PIMS Summer Public Lecture: John Mighton

Speaker: 
John Mighton
Date: 
Thu, Aug 6, 2020
Location: 
Zoom
Conference: 
Diversity in Math Summer School
Abstract: 

Math provides us with mental tools of incredible power. When we learn math we learn to see patterns, to think logically and systematically, to draw analogies, to perceive risk, to understand cause and effect--among many other critical skills.

Yet we tolerate and in fact expect a vast performance gap in math among students and live in a world where many adults aren't equipped with these crucial tools. This learning gap is unnecessary, dangerous and tragic, and it has led us to a problem of intellectual poverty which is apparent everywhere--in fake news, political turmoil, floundering economies, even in erroneous medical diagnoses.

The study of math is an ideal starting point to break down social inequality and empower individuals to build a smarter, kinder, more equitable world. In this talk Mighton will share his vision for a numerate society for all, not just a chosen few.

Speaker Biography

Dr. John Mighton is a playwright turned mathematician and author who founded JUMP Math as a charity in 2001. His work in fostering numeracy and in building children's self-confidence through success in math has been widely recognized. He has been named a Schwab Foundation Social Entrepreneur of the Year, an Ernst & Young Social Entrepreneur of the Year for Canada, an Ashoka Fellow, an Officer of the Order of Canada, and has received five honorary doctorates. John is also the recipient of the 10th Annual Egerton Ryerson Award for Dedication to Public Education.

John developed JUMP Math to address both the tragedy of low expectations for students and that of math anxiety in teachers. John began tutoring children in math as a financially-struggling playwright, and his success in helping students achieve levels of success that teachers and parents had thought impossible fueled his belief that everyone has great untapped potential.

The experience of repeatedly witnessing the heart-breaking paradox of high potential and low achievement led him to conclude that the widely-held assumption that mathematical talent is a rare genetic gift has created a self-fulfilling prophecy of low achievement. A generally high level of math anxiety among many elementary school teachers, itself an outcome of that belief system, creates an additional challenge.
John had to overcome his own "massive math anxiety" before making the decision to earn a Ph.D. in Mathematics at the University of Toronto. He was later awarded an NSERC Fellowship for postdoctoral research in knot and graph theory. He is currently a Fellow of the Fields Institute for Research in Mathematical Sciences and has taught mathematics at the University of Toronto. He has also lectured in philosophy at McMaster University, where he received a master’s degree in philosophy.

His plays have been performed around the world and he is the recipient of several national awards for theatre, including two Governor General’s Awards. He played the role of Tom in the film Good Will Hunting.

Class: 
Subject: 

Mathematical modelling of the emergence and spread of antimalarial drug resistance

Speaker: 
Jennifer Flegg
Date: 
Wed, Jul 29, 2020
Location: 
Zoom
Conference: 
Mathematical Biology Seminar
Abstract: 

Malaria is a leading cause of death in many low-income countries despite being preventable, treatable and curable. One of the major roadblocks to malaria elimination is the emergence and spread of antimalarial drug resistance, which evolves when malaria parasites are exposed to a drug for prolonged periods. In this talk, I will introduce several statistical and mathematical models for monitoring the emergence and spread of antimalarial drug resistance. Results will be presented from a Bayesian geostatistical model that have generated spatio-temporal predictions of resistance based on prevalence data available only at discrete study locations and times. In this way, the model output provides insight into the spatiotemporal spread of resistance that the discrete data points alone cannot provide. I will discuss how the results of these models have been used to update public health policy.

Class: 

Micro-Pharmacology: Recognizing and Overcoming the Tissue Barriers to Drug Delivery

Speaker: 
Kasia Rejniak
Date: 
Wed, Jul 22, 2020
Location: 
Zoom
Conference: 
Mathematical Biology Seminar
Abstract: 

Systemic chemotherapy is one of the main anticancer treatments used for most kinds of clinically diagnosed tumors. However, the efficacy of these drugs can be hampered by the physical attributes of the tumor tissue, such as tortuous vasculature, dense and fibrous extracellular matrix, irregular cellular architecture, metabolic gradients, and non-uniform expression of the cell membrane receptors. This can impede the transport of therapeutic agents to tumor cells in quantities sufficient to exert the desired effect. In addition, tumor microenvironments undergo dynamic spatio-temporal changes during treatment, which can also obstruct the observed drug efficacy. To examine ways to improve drug delivery on a cell-to-tissue scale (single-cell pharmacology), we developed the microscale pharmacokinetics/pharmacodynamics modeling framework “microPKPD”. I will present how this framework can be used to design optimal schedules for various treatments and to investigate the development of drug-induced resistance.

Class: 

Something's wrong in the (cellular) neighborhood: Mechanisms of epithelial wound detection

Speaker: 
Shane Hutson
Date: 
Wed, Jul 15, 2020
Location: 
Zoom
Conference: 
Mathematical Biology Seminar
Abstract: 

The first response of epithelial cells to local wounds is a dramatic increase in cytosolic calcium. This increase occurs quickly – calcium floods into damaged cells within 0.1 s, moves into adjacent cells over ~20 s, and appears in a much larger set of surrounding cells via a delayed second expansion over 40-300 s – but calcium is nonetheless a reporter: cells must detect wounds even earlier. Using the calcium response as a proxy for wound detection, we have identified an upstream G-protein-coupled-receptor (GPCR) signaling pathway, including the receptor and its chemokine ligand. We present experimental and computational evidence that multiple proteases released during cell lysis/wounding serve as the instructive signal, proteolytically liberating active ligand to diffuse to GPCRs on surrounding epithelial cells. Epithelial wounds are thus detected by the activation of a protease bait. We will discuss the experimental evidence and a corresponding computational model developed to test the plausibility of these hypothesized mechanisms. The model includes calcium currents between each cell’s cytosol and its endoplasmic reticulum (ER), between cytosol and extracellular space, and between the cytosol of neighboring cells. These calcium currents are initiated in the model by cavitation-induced microtears in the plasma membranes of cells near the wound (initial influx), by flow through gap junctions into adjacent cells (first expansion), and by the activation of GPCRs via a proteolytically activated diffusible ligand (second expansion). We will discuss how the model matches experimental observations and makes experimentally testable predictions.

Supported by NIH Grant 1R01GM130130.

Class: 

Stationary measure and orbit closure classification for random walks on surfaces

Speaker: 
Ping Ngai (Brian) Chung
Date: 
Thu, Jul 16, 2020
Location: 
Zoom
Conference: 
Pacific Dynamics Seminar
West Coast Dynamics Seminar
Abstract: 

We study the problem of classifying stationary measures and orbit closures for non-abelian action on surfaces. Using a result of Brown and Rodriguez Hertz, we show that under a certain average growth condition, the orbit closures are either finite or dense. Moreover, every infinite orbit equidistributes on the surface. This is analogous to the results of Benoist-Quint and Eskin-Lindenstrauss in the homogeneous setting, and the result of Eskin-Mirzakhani in the setting of moduli spaces of translation surfaces.

We then consider the problem of verifying this growth condition in concrete settings. In particular, we apply the theorem to two settings, namely discrete perturbations of the standard map and the \Out(F_2)-action on a certain character variety. We verify the growth condition analytically in the former setting, and verify numerically in the latter setting.

Class: 
Subject: 

Quantitative weak mixing for random substitution tilings

Speaker: 
Rodrigo Treviño
Date: 
Thu, Jul 2, 2020
Location: 
Zoom
Conference: 
Pacific Dynamics Seminar
West Coast Dynamics Seminar
Abstract: 

"Quantitative weak mixing" is the term used to bound the dimensions of spectral measures of a measure-preserving system. This type of study has gained popularity over the last decade, led by a series of results of Bufetov and Solomyak for a large class of flows which include general one-dimensional tiling spaces as well as translation flows on flat surfaces, as well as results on quantitative weak mixing by Forni. In this talk I will present results which extend the results for flows to higher rank parabolic actions, focusing on quantitative results for a broad class of tilings in any dimension. The talk won't assume familiarity with almost anything, so I will define all objects in consideration.

Class: 
Subject: 

Pages