Scientific

Turán numbers for a 4-uniform hypergraph

Speaker: 
Karen Gunderson
Date: 
Fri, Nov 6, 2020
Location: 
Zoom
PIMS, University of Victoria
Abstract: 

For any $r\geq 2$, an $r$-uniform hypergraph $\mathcal{H}$, and integer $n$, the \emph{Tur\'{a}n number} for $\mathcal{H}$ is the maximum number of hyperedges in any $r$-uniform hypergraph on $n$ vertices containing no copy of $\mathcal{H}$. While the Tur\'{a}n numbers of graphs are well-understood and exact Tur\'{a}n numbers are known for some classes of graphs, few exact results are known for the cases $r \geq 3$. I will present a construction, using quadratic residues, for an infinite family of hypergraphs having no copy of the $4$-uniform hypergraph on $5$ vertices with $3$ hyperedges, with the maximum number of hyperedges subject to this condition. I will also describe a connection between this construction and a `switching' operation on tournaments, with applications to finding new bounds on Tur\'{a}n numbers for other small hypergraphs.

Class: 

What is a Foster-Lyapunov-Margulis Function?

Speaker: 
Jayadev Athreya, University of Washington
Date: 
Mon, Nov 2, 2020
Location: 
University of Utah
Zoom
Conference: 
Online working seminar in Ergodic Theory
Abstract: 

We'll show how a simple idea from probability theory on the recurrence of random walks can be used in many important dynamical and geometric situations, building on work of Eskin-Margulis and others. No prior knowledge of probability theory, random walks, or geometry is required. If time permits, as an unrelated "dessert" of sorts, we'll give a brief proof of the Hopf ratio ergodic theorem using the Birkhoff ergodic theorem for flows.

Class: 
Subject: 

An invitation to "Entropy in Dimension One"

Speaker: 
Kathryn Lindsey
Date: 
Mon, Oct 26, 2020
Location: 
Zoom
University of Utah
Conference: 
Online working seminar in Ergodic Theory
Abstract: 

Which real numbers arise as the entropies of continuous, multimodal, postcritically finite self-maps of real intervals? This is the "one-dimensional" analogue of a more famous open question: which real numbers arise as the dilatations of pseudo-Anosov surface diffeomorphisms? In "Entropy in Dimension One," W. Thurston answers this one-dimensional version of the question. We'll discuss a small subset of the many beautiful ideas and questions in this paper.

Class: 
Subject: 

The Cost of 2-Distinguishing Hypercubes

Speaker: 
Debra Boutin
Date: 
Thu, Oct 29, 2020
Location: 
Zoom
PIMS, University of Victoria
Abstract: 

The distinguishing number of a graph is the smallest number of colors necessary to color the vertices so that no nontrivial automorphism preserves the color classes. If a graph can be distinguished with two colors, the distinguishing cost is the smallest possible size of a color class over all 2-distinguishing colorings. In this talk I will present the long-sought-after (at least by me, :-) ) cost of 2-distinguishing hypercubes. We will begin the talk with definitions and intuitive examples of distinguishing and of cost, cover a bit of history, and work our way to a new technique using binary matrices. Then will we be able to state and understand the new results on hypercubes.

Class: 
Subject: 

2020 PIMS-UBC Math Job Forum for Postdoctoral Fellows and Graduate Students

Speaker: 
Andrew Brown
Eugene Li
Kathryn Nyman
Brian Wetton
Date: 
Mon, Oct 26, 2020 to Tue, Oct 27, 2020
Location: 
Zoom
PIMS, University of British Columbia
Abstract: 

The PIMS-UBC Math Job Forum is an annual Forum to help graduate students and postdoctoral fellows in Mathematics and related areas with their job searches. The session is divided in two parts: short presentations from our panel followed by a discussion.

Learn the secrets of writing an effective research statement, developing an outstanding CV, and giving a winning job talk. We will address questions like: Who do I ask for recommendation letters? What kind of jobs should I apply to? What can I do to maximize my chances of success?

Class: 
Subject: 

Measure rigidity of Cartan actions

Speaker: 
Kurt Vinhage
Date: 
Mon, Oct 19, 2020
Location: 
Zoom
University of Utah
Conference: 
Online working seminar in Ergodic Theory
Abstract: 

We'll take an introductory peek into the measure rigidity program for higher-rank abelian actions by looking at the simplest case, Anosov Z^k actions on (k+1)-dimensional tori. The main structures and ideas appearing in the theory will be explained, as well as how the situation becomes more complicated under fewer assumptions.

Class: 
Subject: 

Packings of Partial Difference Sets

Speaker: 
Shuxing Li
Date: 
Wed, Oct 14, 2020
Location: 
Zoom
PIMS, Simon Fraser University
Conference: 
Emergent Research: The PIMS Postdoctoral Fellow Seminar
Abstract: 

As the underlying configuration behind many elegant finite structures, partial difference sets have been intensively studied in design theory, finite geometry, coding theory, and graph theory. Over the past three decades, there have been numerous constructions of partial difference sets in abelian groups with high exponent, accompanied by numerous very different and delicate techniques. Surprisingly, we manage to unify and extend a great many previous constructions in a common framework, using only elementary methods. The key insight is that, instead of focusing on one single partial difference set, we consider a packing of partial difference sets, namely, a collection of disjoint partial difference sets in a finite abelian group. Although the packing of partial difference sets has been implicitly studied in various contexts, we recognize that a particular subgroup reveals crucial structural information about the packing. Identifying this subgroup allows us to formulate a recursive lifting construction of packings in abelian groups of increasing exponent.

This is joint work with Jonathan Jedwab.

Speaker Bio

Shuxing Li received his Ph. D. degree in Mathematics from Zhejiang University, China, in 2016. From September 2016 to September 2017, he was a postdoctoral fellow at Department of Mathematics, Simon Fraser University. He was an Alexander von Humboldt Postdoctoral Fellow from October 2017 to September 2019, at Faculty of Mathematics, Otto von Guericke University Magdeburg, Germany. Since November 2019, he is a PIMS Postdoctoral Fellow at Department of Mathematics, Simon Fraser University. His research focuses on finite configurations with strong symmetry, which involves algebraic and combinatorial design theory, algebraic coding theory, and finite geometry. In 2018, he received the Kirkman Medal from the Institute of Combinatorics and its Applications in recognition of the excellence of his research.

Class: 
Subject: 

The Life and Numbers of Richard Guy (1916 – 2020)

Speaker: 
Hugh Williams
Date: 
Fri, Oct 2, 2020 to Sat, Oct 3, 2020
Location: 
Zoom
PIMS, University of Calgary
Conference: 
Celebrating the Life of Dr. Richard Guy
Abstract: 

Over fifty years ago Richard Kenneth Guy joined the then Department of Mathematics, Statistics and Computer Science at the nascent University of Calgary. Although he retired from the University in 1982, he continued, even in his last year, to come in to the University every day and work on the mathematics that he loved. In this talk I will provide a glimpse into the life and research of this most remarkable man. In doing this, I will recount several of the important events of Richard’s life and briefly discuss some of his mathematical contributions.

About Dr. Williams

: Dr. Hugh Williams is internationally recognized as an expert in computational number theory and its applications to cryptography. Shortly after obtaining his Ph.D. in 1969 from the Department of Applied Analysis and Computer Science at the University of Waterloo, he joined the newly established Department of Computer Science at the University of Manitoba, where he was promoted to the rank of Full Professor in 1979. He also served there as Associate Dean of Science for Research Development for seven years (1994-2001). He moved to the University of Calgary in 2001 to take up the iCORE Chair for Algorithmic Number Theory and Cryptography (2001-2013) and retired as Emeritus Professor of Mathematics and Statistics in 2016. Dr. Williams has authored over 150 refereed journal papers, 30 refereed conference papers and 20 books or book chapters, and from 1983-85 held a national Killam Research Fellowship. In February 2009, Dr, Williams was selected for a six year term as the inaugural Director of the Tutte Institute for Mathematics and Computing (TIMC), a highly classified research facility established by the federal government. In 2016, he was appointed Professor Emeritus in Mathematics and Statistics at the University of Calgary.

Class: 

The Notorious Collatz conjecture

Speaker: 
Terence Tao
Date: 
Fri, Oct 2, 2020
Location: 
Zoom
PIMS, University of Calgary
Conference: 
Louise and Richard K. Guy Lecture Series
Abstract: 

Start with any natural number. If it is even, divide it by two. If instead it is odd, multiply it by three and add one. Now repeat this process indefinitely. The Collatz conjecture asserts that no matter how large an initial number one starts with, this process eventually reaches the number one (and then loops back to one indefinitely after that). This conjecture has been tested for quintillions of initial numbers, but remains unsolved in general; it is perhaps one of the simplest to state problems in all of mathematics that remains open; it is also one of the most notorious "mathematical diseases" that can lure professional and amateur mathematicians alike into devoting hours of futile effort into trying to solve the problem. While it is itself mostly a curiosity, and the full resolution still remains well out of reach of current technology, the Collatz problem is a model example of the more general concept of a dynamical system, which occurs throughout mathematics and science; and so progress on the Collatz conjecture can shed some light on the more general problem of understanding dynamical systems. In this lecture we give some of the history of the Collatz conjecture and some of its variants, and also describe some recent partial results on the problem.

About Dr. Tao:

Terence Tao was born in Adelaide, Australia in 1975. He has been a professor of mathematics at UCLA since 1999. Tao's areas of research include harmonic analysis, PDE, combinatorics, and number theory. He has received a number of awards, including the Fields Medal in 2006, the MacArthur Fellowship in 2007, the Waterman Award in 2008, and the Breakthrough Prize in Mathematics in 2015. Terence Tao also currently holds the James and Carol Collins chair in mathematics at UCLA, and is a Fellow of the Royal Society and the National Academy of Sciences.

Class: 

Crossing Numbers of Large Complete Graphs

Speaker: 
Noam Elkies
Date: 
Fri, Oct 2, 2020
Location: 
Zoom
PIMS, University of Calgary
Conference: 
The Unsolved Problems Conference: Celebrating the living legacy of the mathematics of Richard Guy
Abstract: 

TBA

Class: 

Pages