2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract:
Throughout my lectures I will explain the geometry of elliptic fibration which can gåve rise to understanding the spectra and anomalies in lower-dimensional theories from the Calabi-Yau compactifications of F-theory. I will first explain what elliptic fibration is and explain Kodaira types, which gives rise an ADE classification. Utilizing Weierstrass model of elliptic fibrations, I will discuss Tate’s algorithm and Mordell-Weil group. By considering codimension one and two singularities and studying the geometry of crepant resolutions, we can define G-models that are geometrically-engineered models from F-theory. I will discuss the dictionary between the gauge theory and the elliptic fibrations and how to incorporate this to learn about topological invariants of the compactified Calabi-Yau that is one of the ingredient to understand spectra in the compactified theories. I will explain the more refined connection to understand the Coulomb branch of the 5d N=1 theories and 6d (1,0) theories and their anomalies from this perspective.
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract:
Throughout my lectures I will explain the geometry of elliptic fibration which can give rise to understanding the spectra and anomalies in lower-dimensional theories from the Calabi-Yau compactifications of F-theory. I will first explain what elliptic fibration is and explain Kodaira types, which gives rise an ADE classification. Utilizing Weierstrass model of elliptic fibrations, I will discuss Tate’s algorithm and Mordell-Weil group. By considering codimension one and two singularities and studying the geometry of crepant resolutions, we can define G-models that are geometrically-engineered models from F-theory. I will discuss the dictionary between the gauge theory and the elliptic fibrations and how to incorporate this to learn about topological invariants of the compactified Calabi-Yau that is one of the ingredient to understand spectra in the compactified theories. I will explain the more refined connection to understand the Coulomb branch of the 5d N=1 theories and 6d (1,0) theories and their anomalies from this perspective.
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract:
Throughout my lectures I will explain the geometry of elliptic fibration which can give rise to understanding the spectra and anomalies in lower-dimensional theories from the Calabi-Yau compactifications of F-theory. I will first explain what elliptic fibration is and explain Kodaira types, which gives rise an ADE classification. Utilizing Weierstrass model of elliptic fibrations, I will discuss Tate’s algorithm and Mordell-Weil group. By considering codimension one and two singularities and studying the geometry of crepant resolutions, we can define G-models that are geometrically-engineered models from F-theory. I will discuss the dictionary between the gauge theory and the elliptic fibrations and how to incorporate this to learn about topological invariants of the compactified Calabi-Yau that is one of the ingredient to understand spectra in the compactified theories. I will explain the more refined connection to understand the Coulomb branch of the 5d N=1 theories and 6d (1,0) theories and their anomalies from this perspective.
The plasma membrane contains a wide array of glycans and glycolipids, many of which are capped by sialic acids (also called neuraminic acid). As a result, sialic acids are front-line mediators of interactions between the extracellular surface and the external environment. Examples include host-pathogen interactions (e.g. influenza) and the recognition of host cells by leukocytes (white blood cells). Thus, the composition of sialosides in the membrane can influence receptor-receptor interactions critical to immunity and cellular function. Our group is investigating the influence of sialic acid on the function of adhesion and immune receptors through the development of tools that alter catabolism of membrane sialosides. The human neuraminidases (NEU) are a family of four isoenzymes (NEU1, NEU2, NEU3, and NEU4) which have a range of substrate preferences as well as cellular and tissue localization. Our group has developed a panel of selective inhibitors, many with nanomolar potency, are being used to investigate how degradation of sialosides influences the function of cellular receptors. We use fluorescence microscopy to measure the size of receptor clusters and lateral mobility of receptors. These biophysical methods provide critical insight into the influence of NEU activity on membrane receptor organization. We have examined the role of NEU enzymes on the function and organization of leukocyte adhesion receptors. We find that specific NEU enzymes can modulate integrin adhesion and affect leukocyte transmigration. In related work, we have examined the influence of synthetic glycoconjugates and inhibitors of NEU on the organization of the CD22 receptor of B cells. We propose that understanding the specific roles of NEU isoenzymes will identify new therapeutic strategies for autoimmunity, inflammation, and cancer.
Growing plant shoots exhibit circumnutations, namely, oscillations that draw three-dimensional trajectories, whose projections on the horizontal plane generate pendular, elliptical, or circular orbits. A large body of literature has followed the seminal work by Charles Darwin in 1880, but the nature of this phenomena is still uncertain and a long-lasting debate produced three main theories: the endogenous oscillator, the exogenous feedback oscillator, and the two-oscillator model. After briefly reviewing the three existing hypotheses, I will discuss a possible interpretation of these spontaneous oscillations as a Hopf-like bifurcation in a growing morphoelastic rod.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily impacting motor neurons. Mutations in superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS. Several of these mutations lead to misfolding or toxic gain of function in the SOD1 protein. Recently, we reported that misfolded SOD1 interacts with TNF receptor-associated factor 6 (TRAF6) in the SOD1-G93A rat model of ALS. Further, we showed in cultured cells that several mutant SOD1 proteins, but not wild type SOD1 protein, interact with TRAF6 via the MATH domain. Here, we sought to uncover the structural details of this interaction through molecular dynamics (MD) simulations of a dimeric model system, coarse grained using the AWSEM force field. We used direct MD simulations to identify buried residues, and predict binding poses by clustering frames from the trajectories. Metadynamics simulations were also used to deduce preferred binding regions on the protein surfaces from the potential of the mean force in orientation space. Well-folded SOD1 was found to bind TRAF6 via co-option of its native homodimer interface. However, if loops IV and VII of SOD1 were disordered, as typically occurs in the absence of stabilizing Zn2+ ion binding, these disordered loops now participated in novel interactions with TRAF6. On TRAF6, multiple interaction hot-spots were distributed around the equatorial region of the MATH domain beta barrel. Expression of TRAF6 variants with mutations in this region in cultured cells demonstrated that TRAF6 residue T475 facilitates interaction with different SOD1 mutants. These findings contribute to our understanding of the disease mechanism and uncover potential targets for the development of therapeutics.
Cytoplasmic streaming is the persistent circulation of the fluid contents of large eukaryotic cells, driven by the action of molecular motors moving along cytoskeletal filaments, entraining fluid. Discovered in 1774 by Bonaventura Corti, it is now recognized as a common phenomenon in a very broad range of model organisms, from plants to flies and worms. This talk will discuss physical approaches to understanding this phenomenon through a combination of experiments (on aquatic plants, Drosophila, and other active matter systems), theory, and computation. A particular focus will be on streaming in the Drosophilaoocyte, for which I will describe a recently discovered "swirling instability" of the microtubule cytoskeleton.
Effectively scaffolding epitopes on immunogens, in order to raise conformationally selective antibodies through active immunization, is a central problem in treating protein misfolding diseases, particularly neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. We seek to selectively target conformations enriched in toxic, oligomeric propagating species while sparing healthy forms of the protein which are often more abundant. To this end, we scaffolded cyclic peptides by varying the number of flanking glycines, to best mimic a misfolding-specific conformation of an epitope of alpha-synuclein enriched in the oligomer ensemble, as characterized by a region most readily disordered and solventexposed in a stressed, partially denatured protofibril. We screen and rank the cyclic peptide scaffolds of alpha-synuclein in silico based on their ensemble overlap properties with the fibril, oligomer-model, and isolated monomer ensembles. We introduce a method for screening against structured off-pathway targets in the human proteome, by selecting scaffolds with minimal conformational similarity between their epitope and the same primary sequence in structured human proteins. Ensemble comparison and overlap was quantified by the Jensen-Shannon Divergence, and a new measure introduced here---the embedding depth, which determines the extent to which a given ensemble is subsumed by another ensemble, and which may be a more useful measure in sculpting the conformational-selectivity of an antibody.
The swimming sperm of many external fertilizing marine organisms face complex fluid flows during their search for egg cells. Aided by chemotaxis, relatively weak flows and marine turbulence enhance spermegg fertilization rates through hydrodynamic guidance and mixing. However, strong flows can mechanically inhibit flagellar motility through elastohydrodynamic interactions - a phenomenon that remains poorly understood. We explore the effects of flow on the buckling dynamics of sperm flagella in an extensional flow through detailed numerical simulations, which are informed by microfluidic experiments and high-speed imaging. Compressional fluid forces lead to rich buckling dynamics of the sperm flagellum beyond a critical dimensionless sperm number, Sp, which represents the ratio of viscous force to elastic force. For non-motile sperm, the maximum buckling curvature and the number of buckling locations, or buckling mode, increase with increasing sperm number. In contrast, motile sperm exhibit an intrinsic flagellar curvature due to the propagation of bending waves along the flagellum. In compressional flow, this preexisting curvature acts as a precursor for buckling, which enhances local curvature without creating new buckling modes and leads to asymmetric beating. However, in extensional flow, flagellar beating remains symmetric with a smaller head yawing amplitude due to tensile forces. We also explore sperm motility in different shear flows. In the presence of Poiseuille flow, the sperm moves downstream or upstream depending on the flow strength along with net movement toward the centerline.
Motor-driven intracellular transport of organelles, vesicles, and other molecular cargo is a highly collective process. An individual cargo is often pulled by a team of transport motors, with numbers ranging from only a few to over 200. We explore the behaviour of these systems using a stochastic model for motordriven transport of molecular cargo by N motors which we solve analytically. We investigate the Ndependence of important quantities such as the velocity, precision of forward progress, energy flows between different system components, and efficiency; these properties obey simple scaling laws with N in two opposing regimes. Finally, we explore performance bounds and trade-offs as N is varied, providing insight into how different numbers of motors might be well-matched to different types of systems depending on which performance metrics are prioritized.