# Scientific

## Analogues of the Hilbert Irreducibility Theorem for integral points on surfaces

We will discuss conjectures and results regarding the Hilbert

Property, a generalization of Hilbert's irreducibility theorem to arbitrary

algebraic varieties. In particular, we will explain how to use conic fibrations

to prove the Hilbert Property for the integral points on certain surfaces,

such as affine cubic surfaces.

## On extremal orthogonal arrays

An orthogonal array with parameters \((N,n,q,t)\) (\(OA(N,n,q,t)\) for short) is an \(N\times n\) matrix with entries from the alphabet \(\{1,2,...,q\}\) such that in any of its \(t\) columns, all possible row vectors of length \(t\) occur equally often. Rao showed the following lower bound on \(N\) for \(OA(N,n,q,2e)\):

\[ N\geq \sum_{k=0}^e \binom{n}{k}(q-1)^k, \]

and an orthogonal array is said to be complete or tight if it achieves equality in this bound. It is known by Delsarte (1973) that for complete orthogonal arrays \(OA(N,n,q,2e)\), the number of Hamming distances between distinct two rows is \(e\). One of the classical problems is to classify complete orthogonal arrays.

We call an orthogonal array \(OA(N,n,q,2e-1)\) extremal if the number of Hamming distances between distinct two rows is \(e\). In this talk, we review the classification problem of complete orthogonal arrays with our contribution to the case \(t=4\) and show how to extend it to extremal orthogonal arrays. Moreover, we give a result for extremal orthogonal arrays which is a counterpart of a result in block designs by Ionin and Shrikhande in 1993.

## Interactions between topology and algebra: advances in algebraic K-theory

The field of algebraic topology has exposed deep connections between topology and algebra. One example of such a connection comes from algebraic K-theory. Algebraic K-theory is an invariant of rings, defined using tools from topology, that has important applications to algebraic geometry, number theory, and geometric topology. Algebraic K-groups are difficult to compute, but advances in algebraic topology have led to many recent computations which were previously intractable. In this talk I will introduce algebraic K-theory and its applications, and discuss recent advances in this field.

## Primes in arithmetic progressions to smooth moduli

The twin prime conjecture asserts that there are infinitely many primes p for which p+2 is also prime. This conjecture appears far out of reach of current mathematical techniques. However, in 2013 Zhang achieved a breakthrough, showing that there exists some positive integer h for which p and p+h are both prime infinitely often. Equidistribution estimates for primes in arithmetic progressions to smooth moduli were a key ingredient of his work. In this talk, I will sketch what role these estimates play in proofs of bounded gaps between primes. I will also show how a refinement of the q-van der Corput method can be used to improve on equidistribution estimates of the Polymath project for primes in APs to smooth moduli.

## L-functions in Analytic Number Theory: Biitu

## Hilbert Class Fields and Embedding Problems

The class number one problem is one of the central subjects in algebraic number theory that turns back to the time of Gauss. This problem has led to the classical embedding problem which asks whether or not any number field $K$ can be embedded in a finite extension $L$ with class number one. Although Golod and Shafarevich gave a counterexample for the classical embedding problem, yet one may ask about the embedding in 'Polya fields', a special generalization of class number one number fields. The latter is the 'new embedding problem' investigated by Leriche in 2014. In this talk, I briefly review some well-known results in the literature on the embedding problems. Then, I will present the 'relativized' version of the new embedding problem studied in a joint work with Ali Rajaei.

## Moments of higher derivatives related to Dirichlet L-functions

The distribution of values of Dirichlet L-functions \(L(s, \chi)\) for variable \(χ\) has been studied extensively and has a vast literature. Moments of higher derivatives has been studied as well, by Soundarajan, Sono, Heath-Brown etc. However, the study of the same for the logarithmic derivative \(L'(s, \chi)/ L(s, \chi)\) is much more recent and was initiated by Ihara, Murty etc. In this talk we will discuss higher derivatives of the logarithmic derivative and present some new results related to their distribution and moments at s=1.

## Consecutive sums of two squares in arithmetic progressions

In 2000, Shiu proved that there are infinitely many primes whose last digit is 1 such that the next prime also ends in a 1. However, it is an open problem to show that there are infinitely many primes ending in 1 such that the next prime ends in 3. In this talk, we'll instead consider the sequence of sums of two squares in increasing order. In particular, we'll show that there are infinitely many sums of two squares ending in 1 such that the next sum of two squares ends in 3. We'll show further that all patterns of length 3 occur infinitely often: for any modulus q, every sequence (a mod q, b mod q, c mod q) appears infinitely often among consecutive sums of two squares. We'll discuss some of the proof techniques, and explain why they fail for primes. Joint work with Noam Kimmel.

## A Conjecture of Mazur predicting the growth of Mordell--Weil ranks in Z_p-extensions

Let \(p\) be an odd prime. We study Mazur's conjecture on the growth of the Mordell--Weil ranks of an elliptic curve \(E/\mathbb{Q}\) over an imaginary quadratic field in which \(p\) splits and \(E\) has good reduction at \(p\). In particular, we obtain criteria that may be checked through explicit calculation, thus allowing for the verification of Mazur's conjecture in specific examples. This is joint work with Rylan Gajek-Leonard, Jeffrey Hatley, and Antonio Lei.

## Collision of orbits under the action of a Drinfeld module

We present various results and conjectures regarding unlikely intersections of orbits for families of Drinfeld modules. Our questions are motivated by the groundbreaking result of Masser and Zannier (from 15 years ago) regarding torsion points in algebraic families of elliptic curves.