Scientific

Biodiversity Mathematics: 100 years of modelling diversity dynamics

Speaker: 
Ailene MacPherson
Date: 
Wed, Nov 6, 2024
Location: 
PIMS, University of British Columbia
Conference: 
UBC Math Biology Seminar Series
Abstract: 

A fundamental aim of evolutionary biology is to describe and explain biodiversity patterns; this aim centers around questions of how many "species" exist, where they are most/least abundant, how this distribution is changing over time, and why. Practically speaking, deciphering biodiversity trends and understanding their underlying ecological and evolutionary drivers is important for monitoring and managing both the biodiversity crisis and emergent epidemics. In this seminar I will discuss 100 years of biodiversity mathematics, beginning with Yule's 1924 foundational work on the model that now bears his name. Despite the twists and turns of the intervening years, I will then introduce recent work in my group with direct connections to Yule's. Throughout, I will highlight the importance of using math and models to clarify biological thinking and will argue that a fully interdisciplinary approach that integrates math, biology, and statistics is necessary to understand biodiversity, be it at the macroevolutionary or epidemiological scale.

Class: 

Recent advances on the directed Oberwolfach problem

Speaker: 
Alice Lacaze-Masmonteil
Date: 
Mon, Oct 21, 2024
Location: 
PIMS, University of Lethbridge
Conference: 
Lethbridge Number Theory and Combinatorics Seminar
Abstract: 

A directed variant of the famous Oberwolfach problem, the directed Oberwolfach problem considers the following scenario. Given $n$ people seated at $t$ round tables of size $m_1,m_2,\ldots,m_t$, respectively, such that $m_1+m_2+\cdots +m_t=n$, does there exist a set of $n−1$ seating arrangements such that each person is seated to the right of every other person precisely once? I will first demonstrate how this problem can be formulated as a type of graph-theoretic problem known as a cycle decomposition problem. Then, I will discuss a particular style of construction that was first introduced by R. HÄggkvist in 1985 to solve several cases of the original Oberwolfach problem. Lastly, I will show how this approach can be adapted to the directed Oberwolfach problem, thereby allowing us to obtain solutions for previously open cases. Results discussed in this talk arose from collaborations with Andrea Burgess, Peter Danziger, and Daniel Horsley.

Class: 

Modeling evolution in dynamic populations: the decoupled Moran Process

Speaker: 
George Berry
Date: 
Wed, Oct 9, 2024
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
UBC Math Biology Seminar Series
Abstract: 

The Moran process models the evolutionary dynamics between two competing types in a population, traditionally assuming a fixed population size. We investigate an extension to this process which adds ecological aspects through variable population sizes. For the original Moran process, birth and death events are correlated to maintain a constant population size. Here we decouple the two events and derive the stochastic differential equation that represents the dynamics in a well-mixed population and captures its behaviour as the population size becomes arbitrarily large. Our analysis explores the impact of this decoupling on two key determinants of the evolutionary process: fixation probabilities and fixation times. In evolutionary graph theory, these statistics depend significantly on the population structure, such that structures have been identified that act as ‘amplifiers’ of selection while others are ‘suppressors’ of selection. However, these features are crucially dependent on the sequence of events, such as birth-death vs death-birth – a seemingly small change with significant consequences. In our extension of the Moran process this distinction is no longer necessary or possible. We determine the fixation probabilities and times for the well-mixed population, regular graphs as well as amplifiers and suppressors, and compare them to the original Moran process.

Class: 

Explicit Zero Density for the Riemann zeta function

Speaker: 
Golnoush Farzanfard
Date: 
Mon, Nov 25, 2024
Location: 
PIMS, University of Northern British Columbia
Online
Zoom
Conference: 
Lethbridge Number Theory and Combinatorics Seminar
Abstract: 

The Riemann zeta function is a fundamental function in number theory. The study of zeros of the zeta function has important applications in studying the distribution of the prime numbers. Riemann hypothesis conjectures that all non-trivial zeros lie on the critical line, while the trivial zeros occur at negative even integers. A less ambitious goal than proving there are no zeros is to determine an upper bound for the number of non-trivial zeros, denoted as $N(\sigma,T)$, within a specific rectangular region defined by $\sigma < \Re{s} < 1$ and $0< \Im{s} < T $. Previous works by various authors like Ingham and Ramare have provided bounds for $N(\sigma,T)$. In 2018, Habiba Kadiri, Allysa Lumley, and Nathan Ng presented a result that provides a better estimate for $N(\sigma,T)$. In this talk, I will give an overview of the method they provide to deduce an upper bound for $N(\sigma,T)$. My thesis will improve their upper bound and also update the result to use better bounds on $\zeta$ on the half line among other improvements.

Class: 

The Ostrowski Quotient for a finite extension of number fields

Speaker: 
Abbas Maarefparvar
Date: 
Wed, Nov 20, 2024
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
UBC Number Theory Seminar
Abstract: 

For a number field $K$, the P\'olya group of $K$, denoted by $Po(K)$, is the subgroup of the ideal class group of $K$ generated by the classes of the products of maximal ideals of $K$ with the same norm. In this talk, after reviewing some results concerning $Po(K)$, I will generalize this notion to the relative P\'olya group $Po(K/F)$, for $K/F$ a finite extension of number fields. Accordingly, I will generalize some results in the literature about P\'olya groups to the relative case. Then, due to some essential observations, I will explain why we need to modify the notion of the relative P\'olya group to the Ostrowski quotient $Ost(K/F)$ to get a more 'accurate' generalization of $Po(K)$. The talk is based on a joint work with Ali Rajaei (Tarbiat Modares University) and Ehsan Shahoseini (Institute For Research In Fundamental Sciences).

Class: 

Mean values of Hardy's Z-function and weak Gram's laws

Speaker: 
Hung M. Bui
Date: 
Tue, Nov 19, 2024
Location: 
PIMS, University of Northern British Columbia
Zoom
Online
Abstract: 

We establish the fourth moments of the real and imaginary parts of the Riemann zeta-function, as well as the fourth power mean value of Hardy's Z-function at the Gram points. We also study two weak versions of Gram's law. We show that those weak Gram's laws hold a positive proportion of time. This is joint work with Richard Hall.

Class: 

On the vertical distribution of the zeros of the Riemann zeta-function

Speaker: 
Emily Quesada Herrera
Date: 
Fri, Nov 8, 2024
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
UBC Number Theory Seminar
Abstract: 

In 1973, assuming the Riemann hypothesis (RH), Montgomery studied the vertical distribution of zeta zeros, and conjectured that they behave like the eigenvalues of some random matrices. We will discuss some models for zeta zeros starting from the random matrix model but going beyond it and related questions, conjectures and results on statistical information on the zeros. In particular, assuming RH and a conjecture of Chan for how often gaps between zeros can be close to a fixed non-zero value, we will discuss our proof of a conjecture of Berry (1988) for the number variance of zeta zeros, in a regime where random matrix models alone do not accurately predict the actual behavior (based on joint work with Meghann Moriah Lugar and Micah B. Milinovich).

Class: 

On the average least negative Hecke eigenvalue

Speaker: 
Jackie Voros
Date: 
Tue, Nov 5, 2024
Location: 
PIMS, University of British Columbia
Online
Zoom
Abstract: 

The least quadratic non-residue has been a central problem in number theory for centuries. The average least quadratic non-residue was explored by Erdős in the 1960s, and many extensions of this problem such as to the average least character non-residue (Martin, Pollack) have been explored. In this talk, we look in to the average first sign change of Fourier coefficients of newforms (equivalently Hecke eigenvalues). We discuss the distribution of Hecke eigenvalues through the so-called 'horizontal' and 'vertical' Sato-Tate distributions, and we also discuss large sieve inequalities for cusp forms that are uniform in both the weight and the level.

Class: 

Skeletal muscle: modeling and computation

Speaker: 
Nilima Nigam
Date: 
Wed, Oct 16, 2024
Location: 
PIMS, University of British Columbia
Conference: 
UBC Math Biology Seminar Series
Abstract: 

Skeletal muscle is composed of cells collectively referred to as fibers, which themselves contain contractile proteins arranged longtitudinally into sarcomeres. These latter respond to signals from the nervous system, and contract; unlike cardiac muscle, skeletal muscles can respond to voluntary control. Muscles react to mechanical forces - they contain connective tissue and fluid, and are linked via tendons to the skeletal system - but they also are capable of activation via stimulation (and hence, contraction) of the sacromeres. The restorative along-fibre force introduce strong mechanical anisotropy, and depend on departures from a characteristic length of the sarcomeres; diseases such as cerebral palsy cause this characteristic length to change, thereby impacting muscle force. In the 1910s, A.V. Hill [1] posited a mathematical description of skeletal muscles which approximated muscle as a 1-dimensional nonlinear and massless spring. This has been a remarkably successful model, and remains in wide use. Yet skeletal muscle is three dimensional, has mass, and a fairly complicated structure. Are these features important? What insights are gained if we include some of this complexity in our models? Many mathematical questions of interest in skeletal muscle mechanics arise: how to model this system, how to discretize it, and what theoretical properties does it have? In this talk, we survey recent work on the modeling, parameter estimation, simulation and validation of a fully 3-D continuum elasticity approach for skeletal muscle dynamics. This is joint work based on a long-standing collaboration with James Wakeling (Dept. of Biomedical Physiology and Kinesiology, SFU).

Class: 

Computational Modeling for Medical Devices

Speaker: 
Pras Pathmanathan
Date: 
Wed, Oct 30, 2024
Location: 
PIMS, University of British Columbia
Zoom
Online
Conference: 
UBC Math Biology Seminar Series
Abstract: 

The Food and Drug Administration (FDA) is responsible for ensuring the safety and effectiveness of medical devices marketed in the US. For several decades, in a handful of niche applications, medical device industry has used computational modeling to provide evidence for safety or effectiveness, complementing bench, animal, or clinical testing. In recent years, the use of computational modeling in medical device regulatory submissions has grown significantly. FDA’s medical device Center is now tasked with evaluating a wide range of computational models of medical devices, as well as computational models implemented in medical device software (for example, patient-specific model-based software devices, closely related to the concept of a digital twin), and in silico clinical trials. This talk will discuss how computational models are relevant to medical devices, and then delve in model credibility assessment. We will discuss key activities involved in evaluating computational models for medical devices, overview recent FDA-led Standards and Guidances, and summarize recent work expanding these methods to the new frontiers of patient-specific models and in silico clinical trials.

Class: 

Pages