Reconstructing carbon dioxide for the last 2000 years: a hierarchical success story

Speaker: Doug Nychka,

Date: Thu, Oct 16, 2014

Location: PIMS, University of British Columbia

Conference: SCAIM Seminar

Subject: Mathematics, Atmospheric and Oceanic Physics: Climate Modelling, Applied Mathematics

Class: Scientific

Abstract:

Knowledge of atmospheric carbon dioxide (CO2) concentrations in the past are important to provide an understanding of how the Earth's carbon cycle varies over time. This project combines ice core CO2 concentrations, from Law Dome, Antarctica and a physically based forward model to infer CO2 concentrations on an annual basis. Here the forward model connects concentrations at given time to their depth in the ice core sample and an interesting feature of this analysis is a more complete characterization of the uncertainty in "inverting" this relationship. In particular, Monte Carlo based ensembles are particularly useful for assessing the size of the decrease in CO2 around 1600 AD. This reconstruction problem, also known as an inverse problem, is used to illustrate a general statistical approach where observational information is limited and characterizing the uncertainty in the results is important. These methods, known as Bayesian hierarchical models, have become a mainstay of data analysis for complex problems and have wide application in the geosciences. This work is in collaboration with Eugene Wahl (NOAA), David Anderson (NOAA) and Catherine Truding.