The Notorious Collatz conjecture
Date: Fri, Oct 2, 2020
Location: Zoom, PIMS, University of Calgary
Conference: Louise and Richard K. Guy Lecture Series
Subject: Mathematics, Number Theory
Class: Scientific
Abstract:
Start with any natural number. If it is even, divide it by two. If instead it is odd, multiply it by three and add one. Now repeat this process indefinitely. The Collatz conjecture asserts that no matter how large an initial number one starts with, this process eventually reaches the number one (and then loops back to one indefinitely after that). This conjecture has been tested for quintillions of initial numbers, but remains unsolved in general; it is perhaps one of the simplest to state problems in all of mathematics that remains open; it is also one of the most notorious "mathematical diseases" that can lure professional and amateur mathematicians alike into devoting hours of futile effort into trying to solve the problem. While it is itself mostly a curiosity, and the full resolution still remains well out of reach of current technology, the Collatz problem is a model example of the more general concept of a dynamical system, which occurs throughout mathematics and science; and so progress on the Collatz conjecture can shed some light on the more general problem of understanding dynamical systems. In this lecture we give some of the history of the Collatz conjecture and some of its variants, and also describe some recent partial results on the problem.
About Dr. Tao:
Terence Tao was born in Adelaide, Australia in 1975. He has been a professor of mathematics at UCLA since 1999. Tao's areas of research include harmonic analysis, PDE, combinatorics, and number theory. He has received a number of awards, including the Fields Medal in 2006, the MacArthur Fellowship in 2007, the Waterman Award in 2008, and the Breakthrough Prize in Mathematics in 2015. Terence Tao also currently holds the James and Carol Collins chair in mathematics at UCLA, and is a Fellow of the Royal Society and the National Academy of Sciences.