The notions of Bloch wave, crystal momentum, and energy bands are commonly regarded as unique features of crystalline materials with commutative translation symmetries. Motivated by the recent realization of hyperbolic lattices in circuit QED, I will present a hyperbolic generalization of Bloch theory, based on ideas from Riemann surface theory and algebraic geometry. The theory is formulated despite the non-Euclidean nature of the problem and concomitant absence of commutative translation symmetries. The general theory will be illustrated by examples of explicit computations of hyperbolic Bloch wavefunctions and bandstructures.
Although integers are ubiquitous in quantum physics, they have different mathematical origins. In this colloquium, I will give a glimpse of how integers arise as either topological invariants or as analytic indices, as is the case in the so-called quantum Hall effect. I will explain the difficulties arising in extending well-known arguments when one relaxes the approximation that the particles effectively do not interact with each other in matter. Recent advances have made such realistic generalizations possible.