Mathematics

Derived Geometry in Twists of Gauge Theories 2 of 4

Speaker: 
Tudor Dimofte
Date: 
Tue, Aug 24, 2021
Location: 
PIMS, University of Saskatchewan
Online
Zoom
Conference: 
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract: 

These lectures will review and develop methods in algebraic geometry (in particular, derived algebraic geometry) to describe topological and holomorphic sectors of quantum field theories. A recurring theme will be the interaction of local and extended operators, and of QFT's in different dimensions. The main examples will come from twists of supersymmetric gauge theories, and will connect to a large body of recent and ongoing work on 3d Coulomb branches, 3d mirror symmetry (and geometric Langlands), logarithmic VOA's and non-semisimple TQFT's, and categorified cluster algebras.

The basic plan for the lectures is:

  • Lecture 1 (2d warmup): categories of boundary conditions, interfaces, and Koszul duality
  • Lectures 2 and 3 (3d): twists of 3d N=2 and N=4 gauge theories; vertex algebras, chiral categories, and braided tensor categories; d mirror symmetry; quantum groups at roots of unity and derived non-semisimple 3d TQFT's (compared and contrasted with Chern-Simons theory)
  • Lecture 4 (4d): line and surface operators in 4d N=2 gauge theory, the coherent Satake category, and relations to Schur indices and 4d N=2 vertex algebras
  1. Lecture 1
  2. Lecture 2
  3. Lecture 3
  4. Lecture 4
Class: 

Derived Geometry in Twists of Gauge Theories 1 of 4

Speaker: 
Tudor Dimofte
Date: 
Mon, Aug 23, 2021
Location: 
PIMS, University of Saskatchewan
Online
Zoom
Conference: 
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract: 

These lectures will review and develop methods in algebraic geometry (in particular, derived algebraic geometry) to describe topological and holomorphic sectors of quantum field theories. A recurring theme will be the interaction of local and extended operators, and of QFT's in different dimensions. The main examples will come from twists of supersymmetric gauge theories, and will connect to a large body of recent and ongoing work on 3d Coulomb branches, 3d mirror symmetry (and geometric Langlands), logarithmic VOA's and non-semisimple TQFT's, and categorified cluster algebras.

The basic plan for the lectures is:

  • Lecture 1 (2d warmup): categories of boundary conditions, interfaces, and Koszul duality
  • Lectures 2 and 3 (3d): twists of 3d N=2 and N=4 gauge theories; vertex algebras, chiral categories, and braided tensor categories; d mirror symmetry; quantum groups at roots of unity and derived non-semisimple 3d TQFT's (compared and contrasted with Chern-Simons theory)
  • Lecture 4 (4d): line and surface operators in 4d N=2 gauge theory, the coherent Satake category, and relations to Schur indices and 4d N=2 vertex algebras
  1. Lecture 1
  2. Lecture 2
  3. Lecture 3
  4. Lecture 4
Class: 

Elliptic Fibrations and Singularities to Anomalies and Spectra 4 of 4

Speaker: 
Monica Jinwoo Kang
Date: 
Thu, Aug 26, 2021
Location: 
PIMS, University of Saskatchewan
Online
Zoom
Conference: 
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract: 

Throughout my lectures I will explain the geometry of elliptic fibration which can gave rise to understanding the spectra and anomalies in lower-dimensional theories from the Calabi-Yau compactifications of F-theory. I will first explain what elliptic fibration is and explain Kodaira types, which gives rise an ADE classification. Utilizing Weierstrass model of elliptic fibrations, I will discuss Tate’s algorithm and Mordell-Weil group. By considering codimension one and two singularities and studying the geometry of crepant resolutions, we can define G-models that are geometrically-engineered models from F-theory. I will discuss the dictionary between the gauge theory and the elliptic fibrations and how to incorporate this to learn about topological invariants of the compactified Calabi-Yau that is one of the ingredient to understand spectra in the compactified theories. I will explain the more refined connection to understand the Coulomb branch of the 5d N=1 theories and 6d (1,0) theories and their anomalies from this perspective.

  1. Lecture 1
  2. Lecture 2
  3. Lecture 3
  4. Lecture 4
Class: 

Elliptic Fibrations and Singularities to Anomalies and Spectra 3 of 4

Speaker: 
Monica Jinwoo Kang
Date: 
Wed, Aug 25, 2021
Location: 
PIMS, University of Saskatchewan
Zoom
Online
Conference: 
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract: 

Throughout my lectures I will explain the geometry of elliptic fibration which can gåve rise to understanding the spectra and anomalies in lower-dimensional theories from the Calabi-Yau compactifications of F-theory. I will first explain what elliptic fibration is and explain Kodaira types, which gives rise an ADE classification. Utilizing Weierstrass model of elliptic fibrations, I will discuss Tate’s algorithm and Mordell-Weil group. By considering codimension one and two singularities and studying the geometry of crepant resolutions, we can define G-models that are geometrically-engineered models from F-theory. I will discuss the dictionary between the gauge theory and the elliptic fibrations and how to incorporate this to learn about topological invariants of the compactified Calabi-Yau that is one of the ingredient to understand spectra in the compactified theories. I will explain the more refined connection to understand the Coulomb branch of the 5d N=1 theories and 6d (1,0) theories and their anomalies from this perspective.

  1. Lecture 1
  2. Lecture 2
  3. Lecture 3
  4. Lecture 4
Class: 

Elliptic Fibrations and Singularities to Anomalies and Spectra 2 of 4

Speaker: 
Monica Jinwoo Kang
Date: 
Tue, Aug 24, 2021
Location: 
PIMS, University of Saskatchewan
Online
Zoom
Conference: 
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract: 

Throughout my lectures I will explain the geometry of elliptic fibration which can give rise to understanding the spectra and anomalies in lower-dimensional theories from the Calabi-Yau compactifications of F-theory. I will first explain what elliptic fibration is and explain Kodaira types, which gives rise an ADE classification. Utilizing Weierstrass model of elliptic fibrations, I will discuss Tate’s algorithm and Mordell-Weil group. By considering codimension one and two singularities and studying the geometry of crepant resolutions, we can define G-models that are geometrically-engineered models from F-theory. I will discuss the dictionary between the gauge theory and the elliptic fibrations and how to incorporate this to learn about topological invariants of the compactified Calabi-Yau that is one of the ingredient to understand spectra in the compactified theories. I will explain the more refined connection to understand the Coulomb branch of the 5d N=1 theories and 6d (1,0) theories and their anomalies from this perspective.

  1. Lecture 1
  2. Lecture 2
  3. Lecture 3
  4. Lecture 4
Class: 

Elliptic Fibrations and Singularities to Anomalies and Spectra 1 of 4

Speaker: 
Monica Jinwoo Kang
Date: 
Mon, Aug 23, 2021
Location: 
PIMS, University of Saskatchewan
Online
Zoom
Conference: 
2nd PIMS Summer School on Algebraic Geometry in High Energy Physics
Abstract: 

Throughout my lectures I will explain the geometry of elliptic fibration which can give rise to understanding the spectra and anomalies in lower-dimensional theories from the Calabi-Yau compactifications of F-theory. I will first explain what elliptic fibration is and explain Kodaira types, which gives rise an ADE classification. Utilizing Weierstrass model of elliptic fibrations, I will discuss Tate’s algorithm and Mordell-Weil group. By considering codimension one and two singularities and studying the geometry of crepant resolutions, we can define G-models that are geometrically-engineered models from F-theory. I will discuss the dictionary between the gauge theory and the elliptic fibrations and how to incorporate this to learn about topological invariants of the compactified Calabi-Yau that is one of the ingredient to understand spectra in the compactified theories. I will explain the more refined connection to understand the Coulomb branch of the 5d N=1 theories and 6d (1,0) theories and their anomalies from this perspective.

  1. Lecture 1
  2. Lecture 2
  3. Lecture 3
  4. Lecture 4
Class: 

Epitope Scaffolding using Alpha-synuclein Cyclic Peptides to Generate Oligomer-selective Antibodies for Parkinson's Disease

Speaker: 
Shaen Hsueh
Date: 
Mon, Jun 28, 2021 to Tue, Jun 29, 2021
Location: 
Online
Conference: 
2021 Frontiers in Biophysics
Abstract: 

Effectively scaffolding epitopes on immunogens, in order to raise conformationally selective antibodies through active immunization, is a central problem in treating protein misfolding diseases, particularly neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. We seek to selectively target conformations enriched in toxic, oligomeric propagating species while sparing healthy forms of the protein which are often more abundant. To this end, we scaffolded cyclic peptides by varying the number of flanking glycines, to best mimic a misfolding-specific conformation of an epitope of alpha-synuclein enriched in the oligomer ensemble, as characterized by a region most readily disordered and solventexposed in a stressed, partially denatured protofibril. We screen and rank the cyclic peptide scaffolds of alpha-synuclein in silico based on their ensemble overlap properties with the fibril, oligomer-model, and isolated monomer ensembles. We introduce a method for screening against structured off-pathway targets in the human proteome, by selecting scaffolds with minimal conformational similarity between their epitope and the same primary sequence in structured human proteins. Ensemble comparison and overlap was quantified by the Jensen-Shannon Divergence, and a new measure introduced here---the embedding depth, which determines the extent to which a given ensemble is subsumed by another ensemble, and which may be a more useful measure in sculpting the conformational-selectivity of an antibody.

Class: 
Subject: 

Effect of External Flows on Sperm Flagellar Dynamics

Speaker: 
Manish Kumar
Date: 
Mon, Jun 28, 2021 to Tue, Jun 29, 2021
Location: 
Online
Conference: 
2021 Frontiers in Biophysics
Abstract: 

The swimming sperm of many external fertilizing marine organisms face complex fluid flows during their search for egg cells. Aided by chemotaxis, relatively weak flows and marine turbulence enhance spermegg fertilization rates through hydrodynamic guidance and mixing. However, strong flows can mechanically inhibit flagellar motility through elastohydrodynamic interactions - a phenomenon that remains poorly understood. We explore the effects of flow on the buckling dynamics of sperm flagella in an extensional flow through detailed numerical simulations, which are informed by microfluidic experiments and high-speed imaging. Compressional fluid forces lead to rich buckling dynamics of the sperm flagellum beyond a critical dimensionless sperm number, Sp, which represents the ratio of viscous force to elastic force. For non-motile sperm, the maximum buckling curvature and the number of buckling locations, or buckling mode, increase with increasing sperm number. In contrast, motile sperm exhibit an intrinsic flagellar curvature due to the propagation of bending waves along the flagellum. In compressional flow, this preexisting curvature acts as a precursor for buckling, which enhances local curvature without creating new buckling modes and leads to asymmetric beating. However, in extensional flow, flagellar beating remains symmetric with a smaller head yawing amplitude due to tensile forces. We also explore sperm motility in different shear flows. In the presence of Poiseuille flow, the sperm moves downstream or upstream depending on the flow strength along with net movement toward the centerline.

Class: 
Subject: 

Scaling Laws and Performance Trade-offs for Collective Transport

Speaker: 
Matthew Leighton
Date: 
Mon, Jun 28, 2021 to Tue, Jun 29, 2021
Location: 
Online
Conference: 
2021 Frontiers in Biophysics
Abstract: 

Motor-driven intracellular transport of organelles, vesicles, and other molecular cargo is a highly collective process. An individual cargo is often pulled by a team of transport motors, with numbers ranging from only a few to over 200. We explore the behaviour of these systems using a stochastic model for motordriven transport of molecular cargo by N motors which we solve analytically. We investigate the Ndependence of important quantities such as the velocity, precision of forward progress, energy flows between different system components, and efficiency; these properties obey simple scaling laws with N in two opposing regimes. Finally, we explore performance bounds and trade-offs as N is varied, providing insight into how different numbers of motors might be well-matched to different types of systems depending on which performance metrics are prioritized.

Class: 
Subject: 

Information Thermodynamics of the Transition-Path Ensemble

Speaker: 
Miranda Louwerse
Date: 
Mon, Jun 28, 2021 to Tue, Jun 29, 2021
Location: 
Online
Conference: 
2021 Frontiers in Biophysics
Abstract: 

The reaction coordinate describing a transition between reactant and product is a fundamental concept in the theory of chemical reactions. Within transition-path theory, a quantitative definition of the reaction coordinate is found in the committor, which is the probability that a trajectory initiated from a given microstate first reaches the product before the reactant. Here we demonstrate an information-theoretic origin for the committor, show how it naturally arises from selecting out the transition-path ensemble from the equilibrium ensemble, and prove that the resulting entropy production is fully determined by committor dynamics. Our results provide parallel stochastic-thermodynamic and information-theoretic measures of the relevance of any system coordinate to the reaction, each of which are maximized by the committor, providing further support for its status as the ‘true’ reaction coordinate.

Class: 
Subject: 

Pages