Bootstrap percolation, one of the simplest cellular automata, can be viewed as an oversimplified model of the spread of an infection on a graph. In the past three decades, much work has been done on bootstrap percolation on finite grids of a given dimension in which the initially infected set A is obtained by selecting its vertices at random, with the same probability p, independently of all other choices. The focus has been on the critical probability, the value of p at which the probability of percolation (eventual full infection) is 1/2.
The first half of my talk will be a review of some of the fundamental results concerning critical probabilities proved by Aizenman, Lebowitz, Schonman, Cerf, Cirillo, Manzo, Holroyd and others, and by Balogh, Morris, Duminil-Copin and myself. The second half will about about the very recent results I have obtained with Holmgren, Smith, Uzzell and Balister on the time a random initial set takes to percolate.