Dynamical Systems

Aperiodicity: Lessons from Various Generalizations

Author: 
C. Radin
Date: 
Thu, Aug 1, 2002
Location: 
University of Victoria, Victoria, Canada
Conference: 
Aperiodic Order, Dynamical Systems, Operator Algebras and Topology
Abstract: 

This is a slightly expanded version of a talk given at the Workshop on Aperiodic Order, held in Victoria, B.C. in August, 2002. The general subject of the talk was the densest packings of simple bodies, for instance spheres or polyhedra, in Euclidean or hyperbolic spaces, and describes recent joint work with Lewis Bowen. One of the main points was to report on our solution of the old problem of treating optimally dense packings of bodies in hyperbolic spaces. The other was to describe the general connection between aperiodicity and nonuniqueness in problems of optimal density.

Class: 

Phase Transitions for Interacting Diffusions

Author: 
Frank den Hollander
Date: 
Wed, Jan 18, 2006
Location: 
University of British Columbia, Vancouver, Canada
Conference: 
PIMS Distinguished Chair Lectures
Abstract: 

In the present talk we focus on the ergodic behavior of systems of interacting diffusions.

Class: 

Entropy and Orbit Equivalence

Author: 
Daniel J. Rudolph
Date: 
Fri, Oct 1, 2004
Location: 
University of Victoria, Victoria, Canada
Conference: 
PIMS Distinguished Chair Lectures
Abstract: 

In these notes we first offer an overview of two core areas in the dynamics of probability measure preserving systems, the Kolmogorov-Sinai theory of entropy and the theory of orbit equivalence. Entropy is a nontrivial invariant that, said simply, measures the exponential growth rate of the number of orbits in a dynamical system, a very rough measure of the complexity of the orbit structure. On the other hand, the core theorem of the orbit theory of these systems, due to Henry Dye, says that any two free and ergodic systems are orbit equivalent, that is to say can be regarded as sitting on the same set of orbits. The goal we set out to reach now is to explain and understand the seeming conflict between these two notions.

Notes: 
Class: