Khovanov homology and 4-manifolds

Speaker: Ciprian Manolescu

Date: Fri, Mar 26, 2021

Location: University of British Columbia, Vancouver, Canada, Online

Subject: Mathematics

Class: Scientific

Abstract:

Over the last forty years, most progress in four-dimensional topology came from gauge theory and related invariants. Khovanov homology is an invariant of knots in of a different kind: its construction is combinatorial, and connected to ideas from representation theory. There is hope that it can tell us more about smooth 4-manifolds; for example, Freedman, Gompf, Morrison and Walker suggested a strategy to disprove the 4D Poincare conjecture using Rasmussen's invariant from Khovanov homology. It is yet unclear whether their strategy can work, and I will explain some of its challenges, as well as a new attempt to pursue it (joint work with Lisa Piccirillo). I will also review other topological applications of Khovanov homology, with regard to smoothly embedded surfaces in 4-manifolds.