Analytic Aspects of L-functions and Applications to Number Theory
Abstract:
I will discuss techniques to get upper and lower bounds for moments of zeta and L-functions. The lower bounds are unconditional and the upper bounds in general rely on the Riemann Hypothesis. In several cases of low moments, one can obtain asymptotics, and I may discuss a couple of such recent cases.
Analytic Aspects of L-functions and Applications to Number Theory
Abstract:
I will discuss techniques to get upper and lower bounds for moments of zeta and L-functions. The lower bounds are unconditional and the upper bounds in general rely on the Riemann Hypothesis. In several cases of low moments, one can obtain asymptotics, and I may discuss a couple of such recent cases.
Analytic Aspects of L-functions and Applications to Number Theory
Abstract:
I will discuss the distribution of values of zeta and L-functions when restricted to the right of the critical line. Here the values are well understood by probabilistic models involving “random Euler products”. This fails on the critical line, and the L-values here have a different flavor here with Selberg’s theorem on log normality being a representative result.
Analytic Aspects of L-functions and Applications to Number Theory
Abstract:
Dirichlet’s class number formula has a nice conjectural generalization in the form of Stark’s conjectures. These conjectures pertain to the value of Artin L-series at s = 1. However, the special values at other integer points also are interesting and in this context, there is a famous conjecture of Zagier. We will give a brief outline of this and display some recent results.
Analytic Aspects of L-functions and Applications to Number Theory
Abstract:
Artin conjectured that each of his non-abelian L-series extends to an entire function if the associated Galois representation is nontrivial and irreducible. We will discuss the status of this conjecture and discuss briefly its relation to the Langlands program.
N.B. This video is a translation into Squamish by T'naxwtn, Peter Jacobs of the Squamish Nation
In Small Number and the Old Canoe mathematics is present throughout the story with the hope that this experience will make at least some members of our young audience, with the moderator’s help, recognize more mathematics around them in their everyday lives. We use terms like smooth, shape, oval, and surface, the mathematical phraseology like, It must be at least a hundred years old, the artist skillfully presents reflection (symmetry) of trees in water, and so on. The idea behind this approach is to give the moderator a few openings to introduce or emphasize various mathematical objects, concepts, and terminology. The short film is a little math suspense story and our question is related only to one part of it. The aim of the question is to lead to an introduction at an intuitive level of the concept of a function and the essence of the principle of inclusion-exclusion as a counting technique. The authors would also like to give their audience an opportunity to appreciate that in order to understand a math question, one often needs to read (or in this case, watch) a problem more than once.
In Small Number and the Old Canoe mathematics is present throughout the story with the hope that this experience will make at least some members of our young audience, with the moderator’s help, recognize more mathematics around them in their everyday lives. We use terms like smooth, shape, oval, and surface, the mathematical phraseology like, It must be at least a hundred years old, the artist skillfully presents reflection (symmetry) of trees in water, and so on. The idea behind this approach is to give the moderator a few openings to introduce or emphasize various mathematical objects, concepts, and terminology. The short film is a little math suspense story and our question is related only to one part of it. The aim of the question is to lead to an introduction at an intuitive level of the concept of a function and the essence of the principle of inclusion-exclusion as a counting technique. The authors would also like to give their audience an opportunity to appreciate that in order to understand a math question, one often needs to read (or in this case, watch) a problem more than once.