We will show the existence of the density of states for $alpha$-stable processes ie existence of the deterministic measure that is a limit (when M goes to infinity) of random measures based on sequence of the eigenvalues of the generator of the $alpha$-stable process in a ball B(0,M) with Poissonian obstacles. We will give also estimate of the limit measure near zero.
We study the fluctuations process for the type-dependent stochastic spin models proposed by Fernández et al.[2], which were used to model biological signaling networks. Using the results of Ethier & Kurtz [1], we analyse the asymmetric basic clock [3], a extension for the simplest cyclic-interaction module, that provides the basic functionality of generating oscillations. Particularly, we apply the central limit theorem for fluctuations process; the dynamics of this limit process is our aim. References. [1] S.N. Ethier, T.G. Kurtz, Markov Processes, Characterization and Convergence. Wiley, New York, 1986. [2] R. Fernandez, L.R. Fontes, E.J. Neves, Density-Profile Processes Describing Biological Signaling Networks: Almost Sure Convergence to Deterministic Trajectories. J Stat Phys (2009) 136: 875-901. [3] M.A. González Navarrete, Sistemas de partículas interagentes dependentes de tipo e aplicaçoes ao estudo de redes de sinalizaçao biológica. Master thesis, Instituto de Matemática e Estatística USP, 2011.
We study translation invariant deterministic dynamics (phi) on the lattice (cellular automata). In particular the evolution and limit of probability measures that give the set of locally eventually phi-periodic points full measure. We prove the convergence of the mean averages under phi of this measures. We characterize the ergodicity of the limit measures (solving a question posed by Blanchard and Tisseur) and we prove that in the limit phi is a mixture measure theoretical odometers.