Environmental Science

The Broughton Archipeligo Monitoring Program

Speaker: 
Stephanie Peacock
Date: 
Fri, Jul 15, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
2011 IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

Modeling Spotting in Wildland Fire

Speaker: 
Jonathan Martin
Date: 
Thu, Jul 14, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
2011 IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

Life History Variations and the Dynamics of Structured Populations

Speaker: 
Romain Richard
Date: 
Thu, Jul 14, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
2011 IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

Memory Induced Animal Movement Patterns

Speaker: 
Ulrike Schlaegel
Date: 
Thu, Jul 14, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
2011 IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

Min Protein Patter Formation

Speaker: 
William Carlquist
Date: 
Thu, Jul 14, 2011
Location: 
PIMS, University of Victoria
Conference: 
AMP Math Biology Workshop
IGTC Summit
Abstract: 

This talk was one of the IGTC Student Presentations.

Class: 

Warming Caused by Cumulative Carbon Emissions: the Trillionth Tonne

Speaker: 
Myles Allen
Date: 
Wed, Aug 8, 2007 to Thu, Aug 9, 2007
Location: 
University of New South Wales, Sydney, Australia
Conference: 
1st PRIMA Congress
Abstract: 

The eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. These present fundamental challenges for the statistical community, since the non-linear relationship between quantities we can observe and the response to a stabilization scenario makes estimates of the risks associated with any stabilization target acutely sensitive to the details of the analysis, prior selection etc. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario and hence less sensitive to underdetermined aspects of the analysis. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO2), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide induced warming of 2○C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9○C.

Class: 

Pages