From liquid fuel injection to blood flow in human body

Speaker: Anirudh Asuri Mukundan

Date: Wed, Mar 23, 2022

Location: Online

Conference: Emergent Research: The PIMS Postdoctoral Fellow Seminar

Subject: Mathematics

Class: Scientific


With the advancement in the high performance computing (HPC), it has become feasible to simulate various physical processes and phenomena. Such processes have applications ranging from energy & transportation sector to biological research. The process of liquid fuel injection and atomization forming fuel drops in aircraft engines is central to the formation of pollutants, therefore, it is crucial to study and control this process. The atomization is a physical process in which bulk liquid breaks up into small drops, further breaking up into even smaller drops finally leading to their evaporation. Quite often these drops are studied in an Eulerian fashion. Another approach to investigate the drops or deformable capsules is in a Lagrangian fashion. In this approach, each drop/capsule is tracked separately and is assumed to be either a rigid sphere or a deformable thin membrane. The latter has the direct application to the investigations of red blood cells (RBC) in biological systems. In fact, a RBC has a visco-hyperelastic thin membrane rendering it to be transported through capillary blood vessels of two times smaller its own size. By studying the dynamics of deformation of this membrane, it is possible to extract vital mechanical properties and develop a generalizable numerical model. This model has the potential to be employed to predict blocks in blood vessel the knowledge of which is helpful in improving the measurement of blood pressure. In this talk, I will be presenting two accurate, efficient, and robust numerical methods for simulating liquid fuel atomization process along with showcasing their engineering applications for subsonic & supersonic aircrafts. Furthermore, I will be giving a brief introduction to my current research work on the development of a numerical membrane model (NMM) for studying RBC deformation dynamics.