Probability

Interacting Particle Systems 3

Speaker: 
Omer Angel
Date: 
Thu, Jun 7, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

Particles attempt to follow a simple dynamic (random walk, constant flow, etc) in some space (interval, line, cycle, arbitrary graph). Add a simple interaction between particles, and the behaviour can change completely. The resulting dynamical systems are far more complex than the ingredients suggest. These processes (interchange process, TASEP, sorting networks, etc) have diverse to many topics: growth processes, queuing theory, representation theory, algebraic combinatorics. I will discuss recent progress on and open problems arising from several models of interacting particle systems.

Class: 

Random Maps 3

Speaker: 
Gregory Miermont
Date: 
Thu, Jun 7, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

The study of maps, that is of graphs embedded in surfaces, is a popular subject that has implications in many branches of mathematics, the most famous aspects being purely graph-theoretical, such as the four-color theorem. The study of random maps has met an increasing interest in the recent years. This is motivated in particular by problems in theoretical physics, in which random maps serve as discrete models of random continuum surfaces. The probabilistic interpretation of bijective counting methods for maps happen to be particularly fruitful, and relates random maps to other important combinatorial random structures like the continuum random tree and the Brownian snake. This course will survey these aspects and present recent developments in this area.

Class: 

Cut points for simple random walks

Speaker: 
Daisuke Shiraishi
Date: 
Tue, Jun 5, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

We consider two random walks conditioned “never to intersect” in Z^2. We show that each of them has infinitely many `global' cut times with probability one. In fact, we prove that the number of global cut times up to n grows like n^{3/8}. Next we consider the union of their trajectories to be a random subgraph of Z^2 and show the subdiffusivity of the simple random walk on this graph.

Class: 

Algebraic recurrence of random walks on groups

Speaker: 
Hilary Finucane
Date: 
Tue, Jun 5, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

Consider a symmetric random walk on a group G. If the trace of the random walk generates G as a semigroup almost surely, then we say that G is algebraically recurrent. In this talk, we will present some initial steps towards understanding algebraic recurrence, including examples of algebraically recurrent and non-algebraically recurrent groups. We will conclude with some open questions. This is joint work with Itai Benjamini and Romain Tessera.

Class: 

Interacting Particle Systems 2

Speaker: 
Omer Angel
Date: 
Tue, Jun 5, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

Particles attempt to follow a simple dynamic (random walk, constant flow, etc) in some space (interval, line, cycle, arbitrary graph). Add a simple interaction between particles, and the behaviour can change completely. The resulting dynamical systems are far more complex than the ingredients suggest. These processes (interchange process, TASEP, sorting networks, etc) have diverse to many topics: growth processes, queuing theory, representation theory, algebraic combinatorics. I will discuss recent progress on and open problems arising from several models of interacting particle systems.

Class: 

Random Maps 1

Speaker: 
Gregory Miermont
Date: 
Mon, Jun 4, 2012 to Tue, Jun 5, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

The study of maps, that is of graphs embedded in surfaces, is a popular subject that has implications in many branches of mathematics, the most famous aspects being purely graph-theoretical, such as the four-color theorem. The study of random maps has met an increasing interest in the recent years. This is motivated in particular by problems in theoretical physics, in which random maps serve as discrete models of random continuum surfaces. The probabilistic interpretation of bijective counting methods for maps happen to be particularly fruitful, and relates random maps to other important combinatorial random structures like the continuum random tree and the Brownian snake. This course will survey these aspects and present recent developments in this area.

Class: 

Interacting Particle Systems 1

Speaker: 
Omer Angel
Date: 
Mon, Jun 4, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

Particles attempt to follow a simple dynamic (random walk, constant flow, etc) in some space (interval, line, cycle, arbitrary graph). Add a simple interaction between particles, and the behaviour can change completely. The resulting dynamical systems are far more complex than the ingredients suggest. These processes (interchange process, TASEP, sorting networks, etc) have diverse to many topics: growth processes, queuing theory, representation theory, algebraic combinatorics. I will discuss recent progress on and open problems arising from several models of interacting particle systems.

Class: 

Balanced self-interacting random walks

Speaker: 
Yuval Peres
Date: 
Mon, Jun 4, 2012
Location: 
PIMS, University of British Columbia
Conference: 
PIMS-MPrime Summer School in Probability
Abstract: 

N.B. Due to microphone problems, the audio at the beginning of this recording is poor.

It is well known that a random walk in d>2 dimensions where the steps are i.i.d. mean zero and fully supported (not restricted to a hyperplane), is transient. Benjamini, Kozma and Schapira asked if we still must have transience when each step is chosen from either μ1 or μ2 based on the past, where μ1 and μ2 are fully supported mean zero distributions. (e.g. we could use μ1 if the current state has been visited before, and μ2 otherwise). We answer their question, and show the answer can change when we have three measures instead of two. To prove this, we will adapt the classical techniques of Lyapunov functions and excessive measures to this setting. No prior familiarity with these methods will be assumed, and they will be introduced in the talk. Many open problems remain in this area, even in two dimensions. Lecture based on joint work with Serguei Popov (Campinas) and Perla Sousi (Cambridge).

Class: 

Time and chance happeneth to them all: Mutation, selection and recombination

Speaker: 
Steven Evans
Date: 
Sat, Oct 15, 2011
Location: 
PIMS, University of Washington
Conference: 
Pacific Northwest Probability Seminar
Abstract: 

Many multi-cellular organisms exhibit remarkably similar patterns of aging and mortality. Because this phenomenon appears to arise from the complex interaction of many genes, it has been a challenge to explain it quantitatively as a response to natural selection. I survey attempts by me and my collaborators to build a framework for understanding how mutation, selection and recombination acting on many genes combine to shape the distribution of genotypes in a large population. A genotype drawn at random from the population at a given time is described in our model by a Poisson random measure on the space of loci, and hence its distribution is characterized by the associated intensity measure. The intensity measures evolve according to a continuous-time, measure-valued dynamical system. I present general results on the existence and uniqueness of this dynamical system, how it arises as a limit of discrete generation systems, and the nature of its equilibria.

Class: 

Hugh C. Morris Lecture: George Papanicolaou

Speaker: 
George Papanicolaou
Date: 
Tue, Nov 8, 2011
Location: 
PIMS, University of British Columbia
Conference: 
Hugh C. Morris Lecture
Abstract: 

N.B. The audio introduction of this lecture has not been properly captured.

The quantification of uncertainty in large-scale scientific and engineering computations is rapidly emerging as a research area that poses some very challenging fundamental problems which go well beyond sensitivity analysis and associated small fluctuation theories. We want to understand complex systems that operate in regimes where small changes in parameters can lead to very different solutions. How are these regimes characterized? Can the small probabilities of large (possibly catastrophic) changes be calculated? These questions lead us into systemic risk analysis, that is, the calculation of probabilities that a large number of components in a complex, interconnected system will fail simultaneously.

I will give a brief overview of these problems and then discuss in some detail two model problems. One is a mean field model of interacting diffusion and the other a large deviation problem for conservation laws. The first is motivated by financial systems and the second by problems in combustion, but they are considerably simplified so as to carry out a mathematical analysis. The results do, however, give us insight into how to design numerical methods where detailed analysis is impossible.

Class: 

Pages