Categorical crepant resolutions of higher dimensional simple singularities

Yujiro Kawamata University of Tokyo

July 7, 2009

X: smooth projective algebraic variety over a field k.
 (algebraic and geometric structure on a set)

- X: smooth projective algebraic variety over a field k.
 (algebraic and geometric structure on a set)
- ▶ Coh(X): abelian category of coherent sheaves on X. (a set with k-vector spaces Hom(a, b) of morphisms between objects a, b)

- X: smooth projective algebraic variety over a field k.
 (algebraic and geometric structure on a set)
- ▶ Coh(X): abelian category of coherent sheaves on X. (a set with k-vector spaces Hom(a, b) of morphisms between objects a, b)
- ▶ X and Coh(X) are categorically equivalent. $x \in X$ corresponds to \mathcal{O}_X (skyscraper sheaf). algebraic structure is recovered from Hom's.

- X: smooth projective algebraic variety over a field k.
 (algebraic and geometric structure on a set)
- ▶ Coh(X): abelian category of coherent sheaves on X. (a set with k-vector spaces Hom(a, b) of morphisms between objects a, b)
- ▶ X and Coh(X) are categorically equivalent. $x \in X$ corresponds to \mathcal{O}_x (skyscraper sheaf). algebraic structure is recovered from Hom's.
- ▶ $D^b(Coh(X))$: bounded derived category. (homotopy category of bounded complexes): quasi-isomorphism becomes isomorphism.

- X: smooth projective algebraic variety over a field k.
 (algebraic and geometric structure on a set)
- ▶ Coh(X): abelian category of coherent sheaves on X. (a set with k-vector spaces Hom(a, b) of morphisms between objects a, b)
- ▶ X and Coh(X) are categorically equivalent. $x \in X$ corresponds to \mathcal{O}_X (skyscraper sheaf). algebraic structure is recovered from Hom's.
- ▶ $D^b(Coh(X))$: bounded derived category. (homotopy category of bounded complexes): quasi-isomorphism becomes isomorphism.

triangulated category: shift functor [1], distinguished triangles $a \to b \to c \to a[1]$ instead of exact sequences $0 \to a \to b \to c \to 0$.

 different (but related) varieties may have equivalent derived categories. (more symmetries)

- different (but related) varieties may have equivalent derived categories. (more symmetries)
- $ightharpoonup \operatorname{Coh}(X)$ is a *heart* of $D^b(\operatorname{Coh}(X))$ w.r.t. *t*-structure.

- different (but related) varieties may have equivalent derived categories. (more symmetries)
- ► Coh(X) is a heart of D^b (Coh(X)) w.r.t. t-structure. There are many hearts in a triangulated category.
- Example: $D^b(Coh(\mathbf{P}^n)) \cong D^b(Mod-R)$ for a finite dimensional non-commutative k-algebra R (representations of a quiver algebra).

1. finite type: $\dim_k \sum_{p \in \mathbb{Z}} \operatorname{Hom}^p(a, b) < \infty$. $a, b \in D^b(\operatorname{Coh}(X))$, $\operatorname{Hom}^p(a, b) = \operatorname{Hom}(a, b[p])$. b[p]: shift of b to the left by p

- 1. finite type: $\dim_k \sum_{p \in \mathbb{Z}} \operatorname{Hom}^p(a, b) < \infty$. $a, b \in D^b(\operatorname{Coh}(X))$, $\operatorname{Hom}^p(a, b) = \operatorname{Hom}(a, b[p])$. b[p]: shift of b to the left by p
- 2. saturated: \forall exact functor $F: D^b(Coh(X)) \rightarrow D^b(Coh(P))$, $\exists a \in D^b(Coh(X))$ s.t. $F(b) \cong Hom(a, b)$ (representable)

- 1. finite type: $\dim_k \sum_{p \in \mathbb{Z}} \operatorname{Hom}^p(a, b) < \infty$. $a, b \in D^b(\operatorname{Coh}(X))$, $\operatorname{Hom}^p(a, b) = \operatorname{Hom}(a, b[p])$. b[p]: shift of b to the left by p
- 2. saturated: \forall exact functor $F: D^b(\text{Coh}(X)) \rightarrow D^b(\text{Coh}(P))$, $\exists a \in D^b(\text{Coh}(X))$ s.t. $F(b) \cong \text{Hom}(a,b)$ (representable)
- 3. Serre functor: $S \in \text{Aut}(D^b(\text{Coh}(X)))$, $\text{Hom}(a,b) \cong \text{Hom}(b,S(a))^*$. $S(a) \cong a \otimes \omega_X[\dim X]$.

- 1. finite type: $\dim_k \sum_{p \in \mathbb{Z}} \operatorname{Hom}^p(a, b) < \infty$. $a, b \in D^b(\operatorname{Coh}(X))$, $\operatorname{Hom}^p(a, b) = \operatorname{Hom}(a, b[p])$. b[p]: shift of b to the left by p
- 2. saturated: \forall exact functor $F: D^b(\text{Coh}(X)) \rightarrow D^b(\text{Coh}(P))$, $\exists a \in D^b(\text{Coh}(X))$ s.t. $F(b) \cong \text{Hom}(a,b)$ (representable)
- 3. Serre functor: $S \in \text{Aut}(D^b(\text{Coh}(X)))$, $\text{Hom}(a,b) \cong \text{Hom}(b,S(a))^*$. $S(a) \cong a \otimes \omega_X[\dim X]$.

Remark: smoothness of X is essential. $x \in X$ singular point, then $\text{Hom}(a, a[p]) \neq 0, \forall p \geq 0$.

- 1. finite type: $\dim_k \sum_{p \in \mathbb{Z}} \operatorname{Hom}^p(a, b) < \infty$. $a, b \in D^b(\operatorname{Coh}(X))$, $\operatorname{Hom}^p(a, b) = \operatorname{Hom}(a, b[p])$. b[p]: shift of b to the left by p
- 2. saturated: \forall exact functor $F: D^b(\text{Coh}(X)) \rightarrow D^b(\text{Coh}(P))$, $\exists a \in D^b(\text{Coh}(X))$ s.t. $F(b) \cong \text{Hom}(a,b)$ (representable)
- 3. Serre functor: $S \in \text{Aut}(D^b(\text{Coh}(X)))$, $\text{Hom}(a, b) \cong \text{Hom}(b, S(a))^*$. $S(a) \cong a \otimes \omega_X[\dim X]$.

Remark: smoothness of X is essential. $x \in X$ singular point, then $\text{Hom}(a, a[p]) \neq 0, \forall p \geq 0$. Example: If X is n-dim Calabi-Yau variety, $S \cong [n]$ (n-Calabi-Yau category)

Minimal models of surfaces

- \triangleright X: algebraic surface; smooth projective variety of dimension 2.
- ▶ C: a (-1)-curve; $C \cong \mathbf{P}^1$, $N_{C/X} \cong \mathcal{O}_C(-1)$.

Minimal models of surfaces

- \triangleright X: algebraic surface; smooth projective variety of dimension 2.
- ▶ C: a (-1)-curve; $C \cong \mathbf{P}^1$, $N_{C/X} \cong \mathcal{O}_C(-1)$.
- ► Castelnuovo's contraction theorem: $f: X \to X'$, X' is again smooth projective, $f(C) = \{P\}, X \setminus C \cong X' \setminus \{P\}$.

Minimal models of surfaces

- \triangleright X: algebraic surface; smooth projective variety of dimension 2.
- ▶ C: a (-1)-curve; $C \cong \mathbf{P}^1$, $N_{C/X} \cong \mathcal{O}_C(-1)$.
- ► Castelnuovo's contraction theorem: $f: X \to X'$, X' is again smooth projective, $f(C) = \{P\}$, $X \setminus C \cong X' \setminus \{P\}$.
- ightharpoonup minimal model: no more (-1)-curve

▶ $c_0 = \mathcal{O}_C(-1) \in D^b(\mathsf{Coh}(X))$: $\sum_{p \in \mathbf{Z}} \mathsf{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)

- ▶ $c_0 = \mathcal{O}_C(-1) \in D^b(\mathsf{Coh}(X))$: $\sum_{p \in \mathbf{Z}} \mathsf{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)
- $ightharpoonup f_*c_0\cong 0.$

- ▶ $c_0 = \mathcal{O}_C(-1) \in D^b(\mathsf{Coh}(X))$: $\sum_{p \in \mathbf{Z}} \mathsf{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)
- $ightharpoonup f_*c_0\cong 0.$
- ▶ $D^b(\mathsf{Coh}(X')) \cong \{b \in D^b(\mathsf{Coh}(X)) \mid \mathsf{Hom}^p(b, c_0) = 0, \forall p\}$ (left orthogonal complement of $\langle c_0 \rangle$: $b \perp c_0[p]$)

- ▶ $c_0 = \mathcal{O}_C(-1) \in D^b(\mathsf{Coh}(X))$: $\sum_{p \in \mathbf{Z}} \mathsf{Hom}^p(c_0, c_0) \cong k$ as graded rings (exceptional object)
- $ightharpoonup f_*c_0\cong 0.$
- ▶ $D^b(\mathsf{Coh}(X')) \cong \{b \in D^b(\mathsf{Coh}(X)) \mid \mathsf{Hom}^p(b, c_0) = 0, \forall p\}$ (left orthogonal complement of $\langle c_0 \rangle$: $b \perp c_0[p]$)
- $\forall a \in D^b(\mathsf{Coh}(X)), \ b \to a \to c \to b[1]. \ c \in \langle c_0 \rangle, \ b = f^*f_*a \in D^b(\mathsf{Coh}(X')).$

- 1. $\mathcal{B} \perp \mathcal{C}$: Hom(b, c) = 0, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
- 2. $\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.

- 1. $\mathcal{B} \perp \mathcal{C}$: Hom(b, c) = 0, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
- 2. $\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.
- ► Example: $D^b(\mathsf{Coh}(X)) = \langle c_0, D^b(\mathsf{Coh}(X')) \rangle$.

- 1. $\mathcal{B} \perp \mathcal{C}$: Hom(b, c) = 0, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
- 2. $\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.
- ► Example: $D^b(\mathsf{Coh}(X)) = \langle c_0, D^b(\mathsf{Coh}(X')) \rangle$.
- Example: $D^b(\mathsf{Coh}(\mathbf{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n+1), \dots, \mathcal{O} \rangle$ (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.

- 1. $\mathcal{B} \perp \mathcal{C}$: Hom(b, c) = 0, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
- 2. $\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.
- ► Example: $D^b(\mathsf{Coh}(X)) = \langle c_0, D^b(\mathsf{Coh}(X')) \rangle$.
- ► Example: $D^b(\mathsf{Coh}(\mathbf{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n+1), \dots, \mathcal{O} \rangle$ (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.
- ▶ If A is finite type, saturated, Serre functor, so are B and C.

- 1. $\mathcal{B} \perp \mathcal{C}$: Hom(b, c) = 0, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
- 2. $\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.
- ► Example: $D^b(\operatorname{Coh}(X)) = \langle c_0, D^b(\operatorname{Coh}(X')) \rangle$.
- ► Example: $D^b(\mathsf{Coh}(\mathbf{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n+1), \dots, \mathcal{O} \rangle$ (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.
- ▶ If A is finite type, saturated, Serre functor, so are B and C.
- ▶ $S_B = j^! S_A j_*$, $j_* : B \to A$ enbedding, $j^! : A \to B$ right adjoint functor.

- 1. $\mathcal{B} \perp \mathcal{C}$: Hom(b, c) = 0, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
- 2. $\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.
- ► Example: $D^b(\operatorname{Coh}(X)) = \langle c_0, D^b(\operatorname{Coh}(X')) \rangle$.
- Example: $D^b(\mathsf{Coh}(\mathbf{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n+1), \dots, \mathcal{O} \rangle$ (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.
- ▶ If A is finite type, saturated, Serre functor, so are B and C.
- ▶ $S_B = j^! S_A j_*$, $j_* : B \to A$ enbedding, $j^! : A \to B$ right adjoint functor.
- ▶ Remark: $D^b(Coh(X))$ has no *orthogonal* decomposition.

- 1. $\mathcal{B} \perp \mathcal{C}$: Hom(b, c) = 0, $\forall b \in \mathcal{B}$, $\forall c \in \mathcal{C}$.
- 2. $\forall a \in \mathcal{A}, b \rightarrow a \rightarrow c \rightarrow b[1]$ distinguished triangle.
- ► Example: $D^b(\operatorname{Coh}(X)) = \langle c_0, D^b(\operatorname{Coh}(X')) \rangle$.
- ► Example: $D^b(\mathsf{Coh}(\mathbf{P}^n)) = \langle \mathcal{O}(-n), \mathcal{O}(-n+1), \dots, \mathcal{O} \rangle$ (full exceptional collection) [Beilinson]
- Toric varieties have also full exceptional collections.
- ▶ If A is finite type, saturated, Serre functor, so are B and C.
- ▶ $S_B = j^! S_A j_*$, $j_* : B \to A$ enbedding, $j^! : A \to B$ right adjoint functor.
- ▶ Remark: $D^b(Coh(X))$ has no *orthogonal* decomposition.
- Corollary: If n-Calabi-Yau category, no SOD.
- ▶ Proof: If $\mathcal{B} \perp \mathcal{C}$, then $\mathcal{C} \perp \mathcal{B}$.

Minimal model program

$$X = X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_m$$

 $f_i: X_{i-1} \longrightarrow X_i$ birational map, one of the following:

- 1. (D): contraction of codimension 1 subvariety (divisorial contraction)
- 2. (F): isomorphism in codimension 1 (flip)

Minimal model program

$$X = X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_m$$

 $f_i: X_{i-1} \longrightarrow X_i$ birational map, one of the following:

- 1. (D): contraction of codimension 1 subvariety (divisorial contraction)
- 2. (F): isomorphism in codimension 1 (flip)
- \triangleright Even if X is smooth, X_i are in general singular.
- ▶ Canonical divisors K_{X_i} are **Q**-Cartier: $m_i K_{X_i}$ are Cartier divisors.
- pull-backs and intersection numbers are defined.

Minimal model program

$$X = X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_m$$

 $f_i: X_{i-1} \longrightarrow X_i$ birational map, one of the following:

- 1. (D): contraction of codimension 1 subvariety (*divisorial* contraction)
- 2. (F): isomorphism in codimension 1 (flip)
- \triangleright Even if X is smooth, X_i are in general singular.
- ▶ Canonical divisors K_{X_i} are **Q**-Cartier: $m_i K_{X_i}$ are Cartier divisors.
- pull-backs and intersection numbers are defined.
- ► Canonical divisor decreases in both cases: $\mu_{i-1}^* K_{X_{i-1}} > \mu_i^* K_{X_i}$ on a common resolution.

- 1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0$, $\forall C$. (minimal model)
- 2. (MF): $f: X_m \to Y$, $(K_{X_m} \cdot C) < 0$, dim $Y < \dim X_m$, $\forall C$ in a fiber of f. (Mori fiber space)

- 1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0$, $\forall C$. (minimal model)
- 2. (MF): $f: X_m \to Y$, $(K_{X_m} \cdot C) < 0$, dim $Y < \dim X_m$, $\forall C$ in a fiber of f. (Mori fiber space)
- ightharpoonup existence proved in dim \leq 4 or if X general type [Birkar-Cascini-Hacon-McKernan]

- 1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0$, $\forall C$. (minimal model)
- 2. (MF): $f: X_m \to Y$, $(K_{X_m} \cdot C) < 0$, dim $Y < \dim X_m$, $\forall C$ in a fiber of f. (Mori fiber space)
- ▶ existence proved in dim \leq 4 or if X general type [Birkar-Cascini-Hacon-McKernan]
- relative version of MMP over S: starting from $h: X \to S$, all maps are over S.

- 1. (MM): K_{X_m} is nef, $(K_{X_m} \cdot C) \geq 0$, $\forall C$. (minimal model)
- 2. (MF): $f: X_m \to Y$, $(K_{X_m} \cdot C) < 0$, dim $Y < \dim X_m$, $\forall C$ in a fiber of f. (Mori fiber space)
- existence proved in dim \leq 4 or if X general type [Birkar-Cascini-Hacon-McKernan]
- relative version of MMP over S: starting from $h: X \to S$, all maps are over S.
- ▶ Example: If $h: X \to S$ arbitrary resolution of singularities, a relative minimal model $h_m: X_m \to S$ is a *minimal resolution*.

▶ $f: X \to X'$ blowing-up of a smooth variety along a smooth subvariety $E' \subset X'$. (typical example of a divisorial contraction).

- ▶ $f: X \to X'$ blowing-up of a smooth variety along a smooth subvariety $E' \subset X'$. (typical example of a divisorial contraction).
- ▶ $E = f^{-1}(E')$ exceptional divisor is a \mathbf{P}^n -bundle over E', $n+1 = \operatorname{codim}_{X'} E'$.

- ▶ $f: X \to X'$ blowing-up of a smooth variety along a smooth subvariety $E' \subset X'$. (typical example of a divisorial contraction).
- ▶ $E = f^{-1}(E')$ exceptional divisor is a \mathbf{P}^n -bundle over E', $n+1 = \operatorname{codim}_{X'} E'$.
- ▶ Canonical divisors: $K_X f^*K_{X'} = nE$.

- ▶ $f: X \to X'$ blowing-up of a smooth variety along a smooth subvariety $E' \subset X'$. (typical example of a divisorial contraction).
- ▶ $E = f^{-1}(E')$ exceptional divisor is a \mathbf{P}^n -bundle over E', $n+1 = \operatorname{codim}_{X'} E'$.
- ▶ Canonical divisors: $K_X f^*K_{X'} = nE$.
- ► Corresponding SOD: For $f_E = f|_E$, $i : E \to X$, $D^b(\mathsf{Coh}(X)) = \langle i_*(f_E^*D^b(\mathsf{Coh}(E')) \otimes \mathcal{O}_E(-n)), \ldots, i_*(f_E^*D^b(\mathsf{Coh}(E')) \otimes \mathcal{O}_E(-1)), f^*D^b(\mathsf{Coh}(X')) \rangle$. [Bondal-Orlov]

 $ar{X}$ cone over Segre variety $\mathbf{P}^n \times \mathbf{P}^{n'} \subset \mathbf{P}^{(n+1)(n'+1)-1}$, n > n'.

- ▶ \bar{X} cone over Segre variety $\mathbf{P}^n \times \mathbf{P}^{n'} \subset \mathbf{P}^{(n+1)(n'+1)-1}$, n > n'.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbf{P}^n \times \mathbf{P}^{n'}$ exceptional divisor.

- $ar{X}$ cone over Segre variety $\mathbf{P}^n \times \mathbf{P}^{n'} \subset \mathbf{P}^{(n+1)(n'+1)-1}$, n > n'.
- ▶ $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbf{P}^n \times \mathbf{P}^{n'}$ exceptional divisor.

```
\mu: \tilde{X} \to X contraction of E collapsing \mathbf{P}^{n'}'s. \mu(E) \cong \mathbf{P}^{n}. \mu': \tilde{X} \to X' contraction of E collapsing \mathbf{P}^{n'}'s \mu'(E) \cong \mathbf{P}^{n'}. f: X \dashrightarrow X' (typical example of a flip)
```

- $ar{X}$ cone over Segre variety $\mathbf{P}^n \times \mathbf{P}^{n'} \subset \mathbf{P}^{(n+1)(n'+1)-1}$, n > n'.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbf{P}^n \times \mathbf{P}^{n'}$ exceptional divisor.
 - $\mu: \tilde{X} \to X$ contraction of E collapsing $\mathbf{P}^{n'}$'s. $\mu(E) \cong \mathbf{P}^{n}$. $\mu': \tilde{X} \to X'$ contraction of E collapsing $\mathbf{P}^{n'}$'s $\mu'(E) \cong \mathbf{P}^{n'}$. $f: X \dashrightarrow X'$ (typical example of a flip)
- ▶ Canonical divisors: $\mu^* K_X (\mu')^* K_{X'} = (n n')E$.

- $ar{X}$ cone over Segre variety $\mathbf{P}^n \times \mathbf{P}^{n'} \subset \mathbf{P}^{(n+1)(n'+1)-1}$, n > n'.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbf{P}^n \times \mathbf{P}^{n'}$ exceptional divisor.

 $\mu: \tilde{X} \to X$ contraction of E collapsing $\mathbf{P}^{n'}$'s. $\mu(E) \cong \mathbf{P}^{n}$. $\mu': \tilde{X} \to X'$ contraction of E collapsing $\mathbf{P}^{n'}$'s $\mu'(E) \cong \mathbf{P}^{n'}$. $f: X \dashrightarrow X'$ (typical example of a flip)

- ▶ Canonical divisors: $\mu^* K_X (\mu')^* K_{X'} = (n n')E$.
- Corresponding SOD: $D^b(\operatorname{Coh}(X)) = \langle i_* \mathcal{O}_{\mu(E)}(-n+n'), \dots, i_* \mathcal{O}_{\mu(E)}(-1), \mu_*(\mu')^* D^b(\operatorname{Coh}(X')) \rangle$. [Bondal-Orlov]

- $ar{X}$ cone over Segre variety $\mathbf{P}^n \times \mathbf{P}^{n'} \subset \mathbf{P}^{(n+1)(n'+1)-1}$, n > n'.
- $\tilde{X} \to \bar{X}$: blowing-up at the vertex, $E \cong \mathbf{P}^n \times \mathbf{P}^{n'}$ exceptional divisor.

 $\mu: \tilde{X} \to X$ contraction of E collapsing $\mathbf{P}^{n'}$'s. $\mu(E) \cong \mathbf{P}^{n}$. $\mu': \tilde{X} \to X'$ contraction of E collapsing $\mathbf{P}^{n'}$ s $\mu'(E) \cong \mathbf{P}^{n'}$. $f: X \dashrightarrow X'$ (typical example of a flip)

- ▶ Canonical divisors: $\mu^* K_X (\mu')^* K_{X'} = (n n')E$.
- Corresponding SOD: $D^b(\operatorname{Coh}(X)) = \langle i_* \mathcal{O}_{\mu(E)}(-n+n'), \dots, i_* \mathcal{O}_{\mu(E)}(-1), \mu_*(\mu')^* D^b(\operatorname{Coh}(X')) \rangle$. [Bondal-Orlov]
- ▶ If n = n', $f : X \longrightarrow X'$ is a flop.
- $\mu_*(\mu')^*: D^b(\mathsf{Coh}(X)) \cong D^b(\mathsf{Coh}(X')).$

ightharpoonup D and K should be parallel.

- ightharpoonup D and K should be parallel.
- ▶ DK Conjecture: Let $f: X \dashrightarrow X'$ be a birational map s.t. $\mu^* K_X \ge (\mu')^* K_{X'}$ on a common resolution.

- \triangleright D and K should be parallel.
- ▶ *DK Conjecture*: Let $f: X \dashrightarrow X'$ be a birational map s.t. $\mu^* K_X \ge (\mu')^* K_{X'}$ on a common resolution.
- ▶ Then $D^b(\mathsf{Coh}(X)) \cong \langle \mathcal{C}, D^b(\mathsf{Coh}(X')) \rangle$ for some \mathcal{C} .

- \triangleright D and K should be parallel.
- ▶ DK Conjecture: Let $f: X \dashrightarrow X'$ be a birational map s.t. $\mu^* K_X \ge (\mu')^* K_{X'}$ on a common resolution.
- ▶ Then $D^b(Coh(X)) \cong \langle C, D^b(Coh(X')) \rangle$ for some C.
- In particular, if $\mu^* K_X = (\mu')^* K_{X'}$, then $D^b(\operatorname{Coh}(X)) \cong D^b(\operatorname{Coh}(X'))$.

X a projective variety with only quotient singularities.

- X a projective variety with only quotient singularities.
 - \mathcal{X} associated smooth *Deligne-Mumford stack*.

- ightharpoonup X a projective variety with only quotient singularities. \mathcal{X} associated smooth $Deligne-Mumford\ stack$.
- ▶ $D^b(Coh(\mathcal{X}))$: finite type, saturated, Serre functor.

- igwedge X a projective variety with only quotient singularities. \mathcal{X} associated smooth Deligne-Mumford stack.
- ▶ $D^b(Coh(\mathcal{X}))$: finite type, saturated, Serre functor.
- Example: X = M/G, $\mathcal{X} = [M/G]$. $D^b(\mathsf{Coh}(\mathcal{X})) = D^b(\mathsf{Coh}^G(M))$: derived category of equivariant sheaves.

- ightharpoonup X a projective variety with only quotient singularities. \mathcal{X} associated smooth $Deligne-Mumford\ stack$.
- ▶ $D^b(Coh(\mathcal{X}))$: finite type, saturated, Serre functor.
- Example: X = M/G, $\mathcal{X} = [M/G]$. $D^b(\mathsf{Coh}(\mathcal{X})) = D^b(\mathsf{Coh}^G(M))$: derived category of equivariant sheaves.
- Similar results to smooth case.

▶ X' cone over Veronese variety $\mathbf{P}^{n-1} \subset \mathbf{P}^{\binom{n+d-1}{d}-1}$ of degree d.

- ightharpoonup X' cone over Veronese variety $\mathbf{P}^{n-1} \subset \mathbf{P}^{\binom{n+d-1}{d}-1}$ of degree d.
- $X' \cong \mathbf{A}^n/\mu_d$ has a quotient singularity.

- ightharpoonup X' cone over Veronese variety $\mathbf{P}^{n-1} \subset \mathbf{P}^{\binom{n+d-1}{d}-1}$ of degree d.
- $X' \cong \mathbf{A}^n/\mu_d$ has a quotient singularity.
- ▶ $f: X \to X'$ blowing-up at the vertex (resolution). $E \cong \mathbf{P}^{n-1}$ exceptional divisor.

- ▶ X' cone over Veronese variety $\mathbf{P}^{n-1} \subset \mathbf{P}^{\binom{n+d-1}{d}-1}$ of degree d.
- $X' \cong \mathbf{A}^n/\mu_d$ has a quotient singularity.
- ▶ $f: X \to X'$ blowing-up at the vertex (resolution). $E \cong \mathbf{P}^{n-1}$ exceptional divisor.
- ▶ Canonical divisors: $K_X f^*K_{X'} = \frac{n-d}{d}E$.

- ▶ X' cone over Veronese variety $\mathbf{P}^{n-1} \subset \mathbf{P}^{\binom{n+d-1}{d}-1}$ of degree d.
- $X' \cong \mathbf{A}^n/\mu_d$ has a quotient singularity.
- ▶ $f: X \to X'$ blowing-up at the vertex (resolution). $E \cong \mathbf{P}^{n-1}$ exceptional divisor.
- ▶ Canonical divisors: $K_X f^*K_{X'} = \frac{n-d}{d}E$.
- ► The direction of *K* may be different from direction of morphism.

 $\pi: \mathcal{X}' \to X'$: associated DM stack, $\tilde{X} = X \times_{X'} \mathcal{X}'$, $\mu: \tilde{X} \to X$, $\mu': \tilde{X} \to \mathcal{X}'$.

Divisorial contractions and flips are similar.

 $\pi: \mathcal{X}' \to X'$: associated DM stack, $\tilde{X} = X \times_{X'} \mathcal{X}'$, $\mu: \tilde{X} \to X$, $\mu': \tilde{X} \to \mathcal{X}'$.

Divisorial contractions and flips are similar.

Corresponding SOD:

1. If
$$n > d$$
, $D^b(\operatorname{Coh}(X)) = \langle \mathcal{O}_E(-n+d), \dots, \mathcal{O}_E(-1), \mu_*(\mu')^* D^b(\operatorname{Coh}(X')) \rangle$.

 $\pi: \mathcal{X}' \to X'$: associated DM stack, $\tilde{X} = X \times_{X'} \mathcal{X}'$, $\mu: \tilde{X} \to X$, $\mu': \tilde{X} \to \mathcal{X}'$.

Divisorial contractions and flips are similar.

Corresponding SOD:

- 1. If n > d, $D^b(\operatorname{Coh}(X)) = \langle \mathcal{O}_E(-n+d), \dots, \mathcal{O}_E(-1), \mu_*(\mu')^* D^b(\operatorname{Coh}(X')) \rangle$.
- 2. If n = d, $\mu'_*\mu^* : D^b(Coh(X)) \cong D^b(Coh(X'))$.

 $\pi: \mathcal{X}' \to X'$: associated DM stack, $\tilde{X} = X \times_{X'} \mathcal{X}'$, $\mu: \tilde{X} \to X$, $\mu': \tilde{X} \to \mathcal{X}'$.

Divisorial contractions and flips are similar.

Corresponding SOD:

- 1. If n > d, $D^b(\operatorname{Coh}(X)) = \langle \mathcal{O}_E(-n+d), \dots, \mathcal{O}_E(-1), \mu_*(\mu')^* D^b(\operatorname{Coh}(X')) \rangle$.
- 2. If n = d, $\mu'_*\mu^* : D^b(Coh(X)) \cong D^b(Coh(X'))$.
- 3. If n < d, $D^b(\operatorname{Coh}(X')) = \langle \mathcal{O}_P(-d+n), \dots, \mathcal{O}_P(-1), \mu'_*\mu^*D^b(\operatorname{Coh}(X)) \rangle$.

$$(A_k)$$
: $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0, k \ge 1$

$$\triangleright (D_k): x_0^{n-1} + x_0x_1^2 + x_2^2 + \cdots + x_n^2 = 0, k \ge 4$$

- (E_6) : $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- $(E_7): x_0^3 x_1 + x_1^3 + x_2^2 + \dots + x_n^2 = 0$
- ► (E_8) : $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$ correspond to Dynkin diagrams many good properties

$$(A_k)$$
: $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0, k \ge 1$

$$(D_k): x_0^{n-1} + x_0x_1^2 + x_2^2 + \cdots + x_n^2 = 0, k \ge 4$$

$$(E_6)$$
: $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$

$$(E_7): x_0^3 x_1 + x_1^3 + x_2^2 + \dots + x_n^2 = 0$$

- ► (E_8) : $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$ correspond to Dynkin diagrams many good properties
- \triangleright Case n=2.
- Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.

$$(A_k)$$
: $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \ge 1$

$$(D_k)$$
: $x_0^{n-1} + x_0 x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \ge 4$

$$(E_6): x_0^4 + x_1^3 + x_2^2 + \dots + x_n^2 = 0$$

$$(E_7): x_0^3 x_1 + x_1^3 + x_2^2 + \dots + x_n^2 = 0$$

•
$$(E_8)$$
: $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$ correspond to Dynkin diagrams many good properties

- \triangleright Case n=2.
- ▶ Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.
- ▶ canonical singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X > 0$

- (A_k) : $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \ge 1$
- $(D_k): x_0^{n-1} + x_0x_1^2 + x_2^2 + \cdots + x_n^2 = 0, k \ge 4$
- (E_6) : $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- $(E_7): x_0^3 x_1 + x_1^3 + x_2^2 + \dots + x_n^2 = 0$
- ► (E_8) : $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$ correspond to Dynkin diagrams many good properties
- \triangleright Case n=2.
- ▶ Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.
- ▶ canonical singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X > 0$
- ▶ minimal resolution = *crepant* resolution: $f: Y \to X$, $K_Y = f^*K_X$.

- (A_k) : $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \ge 1$
- (D_k) : $x_0^{n-1} + x_0 x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \ge 4$
- (E_6) : $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- $(E_7): x_0^3 x_1 + x_1^3 + x_2^2 + \dots + x_n^2 = 0$
- ► (E_8) : $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$ correspond to Dynkin diagrams many good properties
- \triangleright Case n=2.
- ▶ Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.
- ▶ canonical singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X > 0$
- ▶ minimal resolution = *crepant* resolution: $f: Y \to X$, $K_Y = f^*K_X$.
- exceptional locus = Dynkin diagram

- (A_k) : $x_0^{n+1} + x_1^2 + \cdots + x_n^2 = 0$, $k \ge 1$
- (D_k) : $x_0^{n-1} + x_0 x_1^2 + x_2^2 + \cdots + x_n^2 = 0$, $k \ge 4$
- (E_6) : $x_0^4 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$
- $(E_7): x_0^3 x_1 + x_1^3 + x_2^2 + \dots + x_n^2 = 0$
- ► (E_8) : $x_0^5 + x_1^3 + x_2^2 + \cdots + x_n^2 = 0$ correspond to Dynkin diagrams many good properties
- \triangleright Case n=2.
- ▶ Quotient singularities by $G \subset SL(2, \mathbb{C})$: $X = \mathbb{A}^2/G$.
- ▶ canonical singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X > 0$
- ▶ minimal resolution = *crepant* resolution: $f: Y \to X$, $K_Y = f^*K_X$.
- exceptional locus = Dynkin diagram
- ▶ McKay correspondence: $D^b(Coh(\mathcal{X})) \cong D^b(Coh(Y))$.

- ightharpoonup Case $n \geq 3$.
- ▶ terminal singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X \ge 0$ and contains all exceptional divisors $(K_Y f^*K_X = \sum e_i E_i, e_i > 0, \forall j)$.

- ightharpoonup Case $n \geq 3$.
- ▶ terminal singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X \ge 0$ and contains all exceptional divisors $(K_Y f^*K_X = \sum e_j E_j, e_j > 0, \forall j)$.
- ▶ not quotient: no local fundamental group: $\pi_1(X \setminus \{P\}) = \{1\}.$

Simple singularities

- ightharpoonup Case $n \geq 3$.
- ▶ terminal singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X \ge 0$ and contains all exceptional divisors $(K_Y f^*K_X = \sum e_j E_j, e_j > 0, \forall j)$.
- ▶ not quotient: no local fundamental group: $\pi_1(X \setminus \{P\}) = \{1\}.$
- ▶ no crepant resolution in most cases; except the case where small resolutions exist (no exceptional divisor): n = 3, type A_{2m+1} , D_{2m} .

Simple singularities

- ightharpoonup Case $n \geq 3$.
- ▶ terminal singularities: for every resolution $f: Y \to X$, $K_Y f^*K_X \ge 0$ and contains all exceptional divisors $(K_Y f^*K_X = \sum e_j E_j, e_j > 0, \forall j)$.
- ▶ not quotient: no local fundamental group: $\pi_1(X \setminus \{P\}) = \{1\}.$
- ▶ no crepant resolution in most cases; except the case where small resolutions exist (no exceptional divisor): n = 3, type A_{2m+1} , D_{2m} .
- We look for categorical crepant resolution by taking categorical minimal resolutions.

X: type A_1 , ordinary double point, cone over n-1-dimensional smooth quadric hypersurface $E \subset \mathbf{P}^n$.

X: type A_1 , ordinary double point, cone over n-1-dimensional smooth quadric hypersurface $E \subset \mathbf{P}^n$.

- 1. If n = 2m, $D^b(\mathsf{Coh}(E)) = \langle \Sigma_E(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$
- 2. If n = 2m + 1, $D^b(\operatorname{Coh}(E)) = \langle \Sigma_E^+(-n+1), \Sigma_E^-(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle$. Σ_E , Σ_F^+ , Σ_F^- spinor bundles. [Kapranov]

X: type A_1 , ordinary double point, cone over n-1-dimensional smooth quadric hypersurface $E \subset \mathbf{P}^n$.

- 1. If n = 2m, $D^b(\mathsf{Coh}(E)) = \langle \Sigma_E(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$
- 2. If n = 2m + 1, $D^b(\operatorname{Coh}(E)) = \langle \Sigma_E^+(-n+1), \Sigma_E^-(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle$. Σ_E , Σ_F^+ , Σ_F^- spinor bundles. [Kapranov]

 $f: Y \to X$: blowing up at the origin is a resolution.

E: exceptional divisor.

X: type A_1 , ordinary double point, cone over n-1-dimensional smooth quadric hypersurface $E \subset \mathbf{P}^n$.

- 1. If n = 2m, $D^b(\mathsf{Coh}(E)) = \langle \Sigma_E(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$
- 2. If n = 2m + 1, $D^b(\mathsf{Coh}(E)) = \langle \Sigma_E^+(-n+1), \Sigma_E^-(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle$. Σ_E , Σ_E^+ , Σ_E^- spinor bundles. [Kapranov]

 $f: Y \to X$: blowing up at the origin is a resolution.

E: exceptional divisor.

Canonical divisors: $K_Y = f^*K_X + (n-2)E$.

X: type A_1 , ordinary double point, cone over n-1-dimensional smooth quadric hypersurface $E \subset \mathbf{P}^n$.

- 1. If n = 2m, $D^b(\mathsf{Coh}(E)) = \langle \Sigma_E(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle.$
- 2. If n = 2m + 1, $D^b(\operatorname{Coh}(E)) = \langle \Sigma_E^+(-n+1), \Sigma_E^-(-n+1), \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{O}_E \rangle$. Σ_E , Σ_E^+ , Σ_E^- spinor bundles. [Kapranov]

 $f: Y \to X$: blowing up at the origin is a resolution.

E: exceptional divisor.

Canonical divisors: $K_Y = f^*K_X + (n-2)E$.

Corresponding SOD: there exists a triangulated subcategory (categorical minimal resolution) \mathcal{D}_X s.t.

1. If
$$n = 2m$$
, $D^b(\operatorname{Coh}(Y)) = \langle \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{D}_X \rangle$.

2. If
$$n = 2m + 1$$
, $D^b(Coh(Y)) = \langle \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \Sigma_E^+(-1), \mathcal{D}_X \rangle$.

▶ Perf(X) $\subset D^b(Coh(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).

- ▶ Perf(X) $\subset D^b(Coh(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- Equal if X is smooth.
 Serre dual: homology and cohomology.

- ▶ Perf(X) $\subset D^b(Coh(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- Equal if X is smooth.
 Serre dual: homology and cohomology.
- ▶ Perf(X) $\subset \mathcal{D}_X \subset D^b(\mathsf{Coh}(Y))$. Intersection homology.
- ► The right orthogonal $\operatorname{Perf}(X)^{\perp} = \{a \in D^b(\operatorname{Coh}(Y)) \mid f_*a = 0\}.$

- ▶ Perf(X) $\subset D^b(Coh(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- ► Equal if X is smooth. Serre dual: homology and cohomology.
- ▶ Perf(X) $\subset \mathcal{D}_X \subset D^b(\mathsf{Coh}(Y))$. Intersection homology.
- ► The right orthogonal $\operatorname{Perf}(X)^{\perp} = \{a \in D^b(\operatorname{Coh}(Y)) \mid f_*a = 0\}.$
- 1. $c = \Sigma_E(-1)$, if n = 2m.
- 2. $c = \text{Conv}(\Sigma_F^-(-1) \to \Sigma_F^+(-1)[2])$, if n = 2m + 1.

- ▶ Perf(X) $\subset D^b(Coh(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- ► Equal if X is smooth. Serre dual: homology and cohomology.
- ▶ Perf(X) $\subset \mathcal{D}_X \subset D^b(\mathsf{Coh}(Y))$. Intersection homology.
- ► The right orthogonal $\operatorname{Perf}(X)^{\perp} = \{a \in D^b(\operatorname{Coh}(Y)) \mid f_*a = 0\}.$
- 1. $c = \Sigma_E(-1)$, if n = 2m.
- 2. $c = \text{Conv}(\Sigma_E^-(-1) \to \Sigma_E^+(-1)[2])$, if n = 2m + 1.

- ▶ $Perf(X) \subset D^b(Coh(X))$: triangulated subcategory of perfect complexes (locally finite complexes of locally free sheaves).
- ► Equal if X is smooth. Serre dual: homology and cohomology.
- ▶ Perf(X) $\subset \mathcal{D}_X \subset D^b(\mathsf{Coh}(Y))$. Intersection homology.
- ► The right orthogonal $\operatorname{Perf}(X)^{\perp} = \{a \in D^b(\operatorname{Coh}(Y)) \mid f_*a = 0\}.$
- 1. $c = \Sigma_E(-1)$, if n = 2m.
- 2. $c = \text{Conv}(\Sigma_E^-(-1) \to \Sigma_E^+(-1)[2])$, if n = 2m + 1.
- 1. $S_{\mathcal{D}(X)}(c) = c[2]$, if n = 2m. (relatively 2-Calabi-Yau category)
- 2. $S_{\mathcal{D}(X)}(c) = c[3]$, if n = 2m + 1. (relatively 3-Calabi-Yau category)

► *X*: type *A*₂.

- ► *X*: type *A*₂.
- $ightharpoonup f: Y \to X$: blowing up at the origin is a resolution.
- ▶ E: exceptional divisor. cone over (n-2)-dimensional quadric hypersurface E'.

- ► *X*: type *A*₂.
- ightharpoonup f: Y o X: blowing up at the origin is a resolution.
- ▶ E: exceptional divisor. cone over (n-2)-dimensional quadric hypersurface E'.
- ► Canonical divisors: $K_Y = f^*K_X + (n-2)E$.

- ► *X*: type *A*₂.
- $ightharpoonup f: Y \to X$: blowing up at the origin is a resolution.
- ▶ E: exceptional divisor. cone over (n-2)-dimensional quadric hypersurface E'.
- ► Canonical divisors: $K_Y = f^*K_X + (n-2)E$.
- Corresponding SOD: there exists a triangulated subcategory (categorical minimal resolution) \mathcal{D}_X s.t.

$$D^b(\mathsf{Coh}(Y)) = \langle \mathcal{O}_E(-n+2), \dots, \mathcal{O}_E(-1), \mathcal{D}_X \rangle.$$

Type A₂ case (Calabi-Yau property)

1.
$$c = \Sigma_E(-1)$$
, if $n = 2m + 1$.

2.
$$c^{\pm} = \Sigma_{E}^{\pm}(-1)$$
, if $n = 2m$.

1.
$$c = \Sigma_E(-1)$$
, if $n = 2m + 1$.

2.
$$c^{\pm} = \Sigma_{E}^{\pm}(-1)$$
, if $n = 2m$.

1.
$$c = \Sigma_E(-1)$$
, if $n = 2m + 1$.

- 2. $c^{\pm} = \Sigma_{E}^{\pm}(-1)$, if n = 2m.
- ▶ Both are relatively 2-Calabi-Yau categories: $S_{\mathcal{D}(X)}(c) = c[2]$, and $S_{\mathcal{D}(X)}(c^{\pm}) = c^{\pm}[2]$.

▶ *X*: type E_6 , n = 3.

- ▶ *X*: type E_6 , n = 3.
- ▶ $f: Y \to X$: a resolution with exceptional divisors $E_1 \cup E_2$. E_1 a singular surface, $E_2 \cong \mathbf{P}^2$.

- ▶ *X*: type E_6 , n = 3.
- ▶ $f: Y \to X$: a resolution with exceptional divisors $E_1 \cup E_2$. E_1 a singular surface, $E_2 \cong \mathbf{P}^2$.
- ► Canonical divisors: $K_Y = f^*K_X + E_1 + E_2$.

- ▶ *X*: type E_6 , n = 3.
- ▶ $f: Y \to X$: a resolution with exceptional divisors $E_1 \cup E_2$. E_1 a singular surface, $E_2 \cong \mathbf{P}^2$.
- ► Canonical divisors: $K_Y = f^*K_X + E_1 + E_2$.
- Corresponding SOD: there exists a triangulated subcategory (categorical minimal resolution) \mathcal{D}_X s.t. $D^b(\text{Coh}(Y)) = \langle \mathcal{O}_Y(E_2)/\mathcal{O}_Y, \mathcal{O}_Y(E_1 + E_2)/\mathcal{O}_Y, \mathcal{D}_X \rangle$.

Type E₆ case (Calabi-Yau property)

▶ There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$. $0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow 0$.

- ► There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$. $0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow 0$.

- ► There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$. $0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow 0$.

- ▶ $S_{\mathcal{D}(X)}^3 \cong [7]$. (relatively 7/3-Calabi-Yau category)

- ► There are sheaves c_1, c_2, c_3 supported on $E_1 \cup E_2$. $0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow 0$.
- $ightharpoonup S_{\mathcal{D}(X)}(c_1) = c_2[2], S_{\mathcal{D}(X)}(c_2) = c_3[2], S_{\mathcal{D}(X)}(c_3) = c_1[3].$
- ▶ $S_{\mathcal{D}(X)}^3 \cong [7]$. (relatively 7/3-Calabi-Yau category)
- Question: Let X be a variety with canonical singularities. Then does there exist a categorical minimal resolution whose relative part has a fractionally crepant filtation?