Sequential, robust design strategies

International Conference On Robust Statistics

May, 2002

Doug Wiens University of Alberta

preprints, etc.: www.stat.ualberta.ca

Approximate regression models

• Experimenter fits a response $\hat{Y}(\mathbf{x}) = f\left(\mathbf{x}; \hat{\boldsymbol{\theta}}\right)$ by regression, when in fact

$$E[Y|\mathbf{x}] pprox f(\mathbf{x}; oldsymbol{ heta})$$
 .

- The points x_i at which Y will be observed are to be chosen with an eye to protection against a misspecified response function.
- Best fitting parameter is

$$oldsymbol{ heta}_0 = rgmin \int_S \left\{ E([Y|\mathbf{x}] - f(\mathbf{x}; oldsymbol{ heta})
ight\}^2 d\mathbf{x}$$

for $\mathbf{x} \in \mathcal{S}$ ("design space").

• Put $g(\mathbf{x}) = E[Y|\mathbf{x}] - f(\mathbf{x}; \theta_0)$; then (additive errors)

$$Y(\mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}_0) + g(\mathbf{x}) + \varepsilon.$$

PROBLEM: Choose a design ξ (= a measure placing mass n^{-1} at selected points $\mathbf{x}_1, ..., \mathbf{x}_n \in S$) so as to minimise loss due to:

- random variation; depends only on ξ
- bias (of Ŷ(x) as estimate of E[Y|x]; depends on (g, ξ))

Loss: Integrated MSE of the predictions

$$\begin{aligned} \mathcal{L}(g,\xi) &= \int_{\mathcal{S}} E\left[\left\{\hat{Y}(\mathbf{x}) - E(Y|\mathbf{x})\right\}^{2}\right] d\mathbf{x} \\ &= \int_{\mathcal{S}} VAR\left[\hat{Y}(\mathbf{x})\right] d\mathbf{x} \\ &+ \int_{\mathcal{S}} \left\{E\left[f\left(\mathbf{x};\hat{\boldsymbol{\theta}}\right) - f\left(\mathbf{x};\boldsymbol{\theta}_{0}\right) - g(\mathbf{x})\right]\right\}^{2} d\mathbf{x} \end{aligned}$$

- Find ξ₀ = arg min L(g, ξ) after
 (i) maximising over g (= E [Y|x] f (x; θ₀)); or
 (ii) estimating g.
- Sequential strategy may be called for, in either case
- $\hat{\theta}$ can be LSE, or M-estimate (with σ^2 replaced by, e.g., $\sigma^2 E\left[\psi^2\right] / (E\left[\psi'\right])^2$).

NONLINEAR REGRESSION (with Sanjoy Sinha):

Fit $E[Y|\mathbf{x}] = f(\mathbf{x}; \boldsymbol{\theta}_0)$ when in fact this is only approximate, e.g.

 $f(x; \theta_0) = \theta_0 e^{-\theta_1 x}$ but $E[Y|\mathbf{x}] = \frac{\theta_0 x}{\theta_1 + x}$.

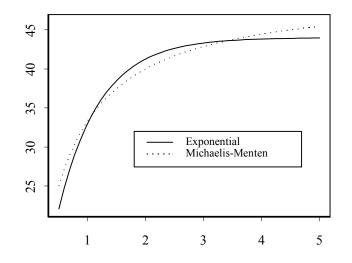


Figure 1: E[Y|x] is Michaelis-Menten with $\theta = (50, .5)^T$; best-fitting exponential is $f(x; \theta_0)$ with $\theta_0 = (44, 1.39)^T$. $(\theta_0 = \arg \min \int_{.5}^{5} \{E([Y|\mathbf{x}] - f(\mathbf{x}; \theta)\}^2 d\mathbf{x}.)$

$$g(\mathbf{x}; \boldsymbol{\theta}_0) = E[Y|\mathbf{x}] - f(\mathbf{x}; \boldsymbol{\theta}_0)$$

Asymptotic MSE matrix is $MSE_N(\theta_0) = M_N^{-1}(\theta_0) \left\{ Q_N(\theta_0) + b_N(\theta_0) b_N^T(\theta_0) \right\} M_N^{-1}(\theta_0),$ where $\mathbf{z}(\mathbf{x}; \theta) = \partial f(\mathbf{x}; \theta) / \partial \theta$ and where

$$egin{aligned} \mathbf{M}_N(m{ heta}) &=& \sum\limits_{i=1}^N \mathbf{z}(\mathbf{x}_i;m{ heta}) \mathbf{z}^T(\mathbf{x}_i;m{ heta}), \ \mathbf{Q}_N(m{ heta}) &=& \sum\limits_{i=1}^N \mathbf{z}(\mathbf{x}_i;m{ heta}) \sigma^2(\mathbf{x}_i) \mathbf{z}^T(\mathbf{x}_i;m{ heta}), \ \mathbf{b}_N(m{ heta}) &=& \sum\limits_{i=1}^N \mathbf{z}(\mathbf{x}_i;m{ heta}) g(\mathbf{x}_i;m{ heta}). \end{aligned}$$

Loss is IMSE:

$$\begin{split} \mathcal{L}(g,\xi) &= \int_{\mathcal{S}} E\left[\left\{\hat{Y}(\mathbf{x}) - E(Y|\mathbf{x})\right\}^2\right] d\mathbf{x} \\ &\approx tr\left[\mathsf{MSE}_N(\theta_0) \cdot \mathbf{A}(\theta_0)\right] + \int_{\mathcal{S}} g^2(\mathbf{x};\theta_0) d\mathbf{x}, \\ \end{split}$$
where $\mathbf{A}(\theta) = \int_{\mathcal{S}} \mathbf{z}(\mathbf{x};\theta) \mathbf{z}^T(\mathbf{x};\theta) d\mathbf{x}.$

Sequential approach. Given $\{\mathbf{x}_i, Y_i\}_{i=1}^N$: (i) Compute $\hat{\boldsymbol{\theta}}_N$ and estimates of $g(\mathbf{x})$, $\sigma^2(\mathbf{x})$. (ii) Using these estimates, estimate $\Delta_{N+1}(\mathbf{x}) =$ increase in \mathcal{L} if the next design point is \mathbf{x} . (iii) Choose $\mathbf{x}_{N+1} = \arg \min \Delta_{N+1}(\mathbf{x})$.

Estimate $g(\mathbf{x})$ by smoothing the residuals (cubic spline in 1-dimensional; generalised additive model for higher dimensions).

Asymptotic results hold for sequentially chosen design points - Sinha and Wiens (2002).

CLINICAL TRIALS: Subjects are assigned to one of p treatment groups. Covariates x are measured and treatment assignments made, according to a random mechanism.

Optimal assignment probabilities

$$\mathsf{Pr}\left(\mathsf{treatment}\ i|\mathbf{x}\right) = \rho_i(\mathbf{x})$$

are to be determined.

Post treatment response to treatment is

$$Y = \theta_i + \mathbf{z}^T(\mathbf{x})\boldsymbol{\phi} + g_i(\mathbf{x}) + \sigma_i\varepsilon$$

for regressors z(x), error variances σ_i , response errors $g_i(x)$.

Design
$$\xi = \{\rho_1, ..., \rho_p\}.$$

Let $W_{p-1 \times p}$ have rows which are mutually orthogonal and orthogonal to 1. We estimate a complete set $W\theta$ of contrasts of the treatment effects $\{\theta_i\}_{i=1}^p$.

Loss is

$$\mathcal{L}\left(\rho_{1},...,\rho_{p}\right) = \lim_{n \to \infty} \left| nMSE\left(\mathbf{W}\hat{\boldsymbol{\theta}}\right) \right|.$$

 Heckman (1987) - similar approach; different neighbourhood structure. Under realistic conditions *constant* assignment probabilities were found to be optimal. It turns out that constant probabilities

 $\rho_i(\mathbf{x}) \equiv r_i$

minimize the COV part of MSE.

Optimal $\{r_i\}_{i=1}^p$ are those which

minimise
$$rac{\sum \left(r_i/\sigma_i^2\right)}{\prod \left(r_i/\sigma_i^2\right)},$$

subject to $\{r_i\}_{i=1}^p$ being a probability distribution.

When p = 2,

$$r_i = \frac{\sigma_i}{\sigma_1 + \sigma_2}.$$

Sequential assignments. Adjust the (asymptotically) variance minimising $\{r_i\}_{i=1}^p$, while also minimising variance and bias in finite samples.

Suppose there are L levels of the (grouped) covariates $\mathbf{x}^{(1)}, ..., \mathbf{x}^{(L)}$. If n assignments have been made, and the $(n+1)^{th}$ subject arrives with covariates \mathbf{x}_* , then assign to treatment k with probability

$$P(k|\mathbf{x}_*) \propto \hat{r}_k d_k^* b_k^*,$$

where:

(i) \hat{r}_k is the optimal r, with the σ_i estimated.

(ii) d_k^* measures the reduction in $\left| COV \left(\mathbf{W} \hat{\boldsymbol{\theta}} \right) \right|$ resulting from an assignment to treatment k.

(iii) b_k^* is inversely proportional to the (finite sample) bias² of $\hat{\theta}$, resulting from an assignment to treatment k.

$$P\left(k|\mathbf{x}_{*}
ight) \propto \hat{r}_{k}d_{k}^{*}b_{k}^{*}$$

Similar to Atkinson (1982) who takes $P(k|\mathbf{x}_*) \propto d_k^*$ (assuming no bias, and that all σ_i^2 are equal).

Computation of b_k^* requires $\hat{g}_1(\mathbf{x}), ..., \hat{g}_p(\mathbf{x})$; an *ad hoc* estimate is the adjusted residual

$$\hat{g}_i(\mathbf{x}^{(l)}) = sign\left(\tilde{e}_{i,l}\right) \left(\tilde{e}_{i,l}^2 + \frac{\hat{\sigma}_i^2}{n_{i,l}}\right)^{1/2},$$

where $n_{i,l} = \#$ of assignments of $\mathbf{x}^{(l)}$ to group *i*; $\tilde{e}_{i,l} =$ median of corresponding residuals.

SPATIAL STUDIES

- Observe $Y(\mathbf{t}) = X(\mathbf{t}) + \varepsilon(\mathbf{t})$ at locations $\mathbf{t} \in \mathcal{T} \subset \mathbb{R}^d$.
- $X(\mathbf{t})$ random: $X(\mathbf{t}) = E[X(\mathbf{t})] + \delta(\mathbf{t})$.
- $E[X(t)] \approx \mathbf{z}^T(t) \boldsymbol{\theta}$ for regressors $\mathbf{z}(t)$
- VAR [ε(t)] = f(t) only approximately known (assumed constant?)
- $COV[\delta(t), \delta(t')] = g(t, t')$ only approximately known (assumed isotropic?)
- Choose n locations from T (with N sites) so as to minimise the MSE of the predictions, maximised over neighbourhoods of the assumed f, g and regression model.

NEXT:

- Sequential choice of sites?
- Simulated annealing?

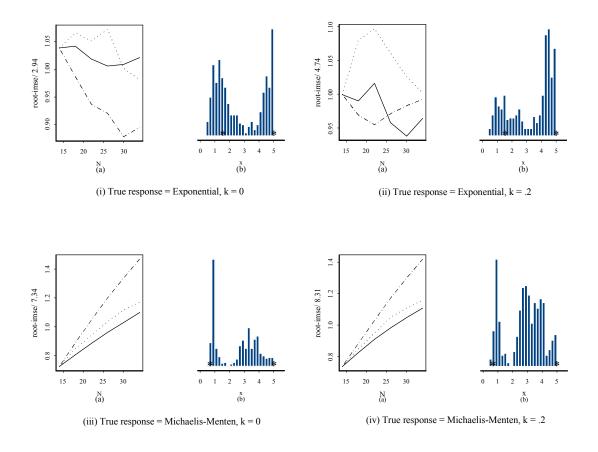


Figure 2: Fitted response is exponential, true response is either exponential or Michaelis-Menten; $n_0 = 10$ equally spaced sites chosen initially, with $r_0 = 3$ replicates at each. Then $n_1 = 6$ additional sites chosen sequentially, with $r_1 = 4$ replicates at each. (a) Average (over 100 sample paths) values of $(N \cdot IMSE)^{1/2}$ for sequential (----), uniform (...) and D-optimal (-..-) designs. Variance function is $\sigma^2(x) = 1 + .2(x - .5)^2$. (b) Probability histogram of all points chosen by the 100 sequential designs; asterisks are at the average sites of the D-optimal designs.

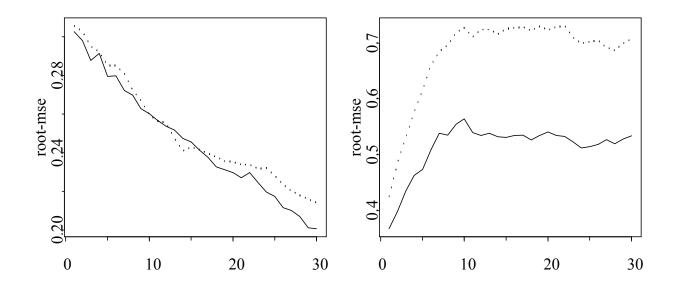


Figure 3: Root-mse of estimated treatment effects versus new subjects; average of 200 simulated runs. Two treatments, two covariates X_1, X_2 . Heteroscedastic errors: $\sigma_1^2 = 1$, $\sigma_2^2 = 1/4$. Dotted line is Atkinson's method modified for heteroscedasticity: $P(k|\mathbf{x}_*) \propto \hat{r}_k d_k^*$; solid line is the robust method. Left: $g_1(\mathbf{x}) = g_2(\mathbf{x}) \equiv 0$ (fitted model correct). Right: $g_i(\mathbf{x}) \propto (-1)^i x_1 x_2$.

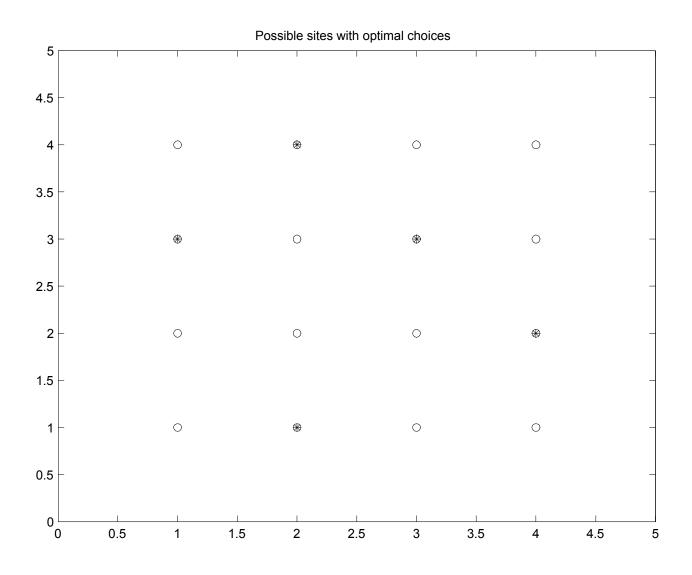


Figure 4: 4×4 grid of possible locations; 5 sites chosen to minimise trace of MSE matrix. Fitted model exact: constant measurement errors, isotropic covariance function exp $(-.2 ||\mathbf{t} - \mathbf{t'}||)$, regressors $\mathbf{z}(\mathbf{t}) = (1, t_1, t_2)^T$.

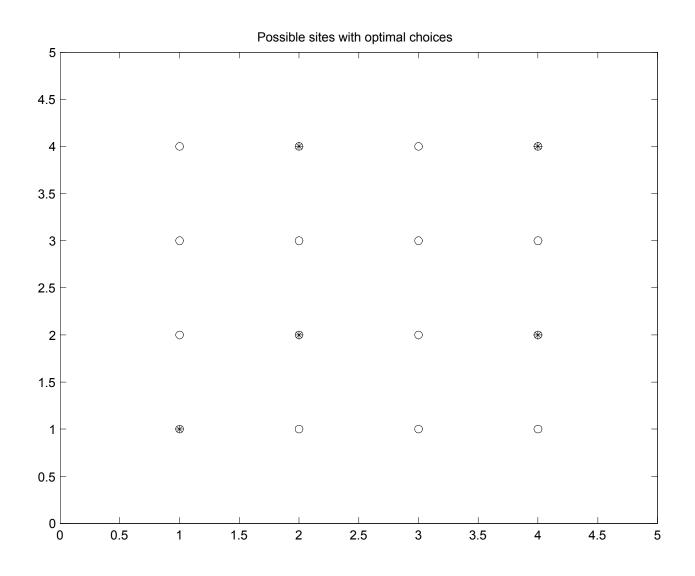


Figure 5: Same fitted model, but loss is maximised over neighbourhoods of the model, then minimised over choices of locations.