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Approximate regression models

² Experimenter ¯ts a response Ŷ (x) = f
³
x; µ̂

´
by

regression, when in fact

E[Y jx] ¼ f (x;µ) :

² The points xi at which Y will be observed are

to be chosen with an eye to protection against a

misspeci¯ed response function.

² Best ¯tting parameter is

µ0 = argmin
Z
S
fE([Y jx]¡ f (x;µ)g2 dx

for x 2 S (\design space").

² Put g(x) = E [Y jx] ¡ f (x;µ0); then (additive

errors)

Y (x) = f (x;µ0) + g(x) + ":



PROBLEM: Choose a design » (= a measure placing

mass n¡1 at selected points x1; :::;xn 2 S) so as to
minimise loss due to:

² random variation; depends only on »

² bias (of Ŷ (x) as estimate of E[Y jx]; depends on
(g; »))

Loss: Integrated MSE of the predictions

L(g; ») =
Z
S
E
·n
Ŷ (x)¡E(Y jx)

o2¸
dx

=
Z
S
V AR

h
Ŷ (x)

i
dx

+
Z
S
n
E
h
f
³
x; µ̂

´
¡ f (x;µ0)¡ g(x)

io2
dx



² Find »0 = argminL(g; ») after
(i) maximising over g (= E [Y jx]¡ f (x;µ0)); or
(ii) estimating g.

² Sequential strategy may be called for, in either
case

² µ̂ can be LSE, or M-estimate (with ¾2 replaced
by, e.g., ¾2E

h
Ã2
i
=
¡
E
£
Ã0
¤¢2).



NONLINEAR REGRESSION (with Sanjoy Sinha):

Fit E[Y jx] = f (x;µ0) when in fact this is only ap-

proximate, e.g.

f (x;µ0) = µ0e
¡µ1x but E[Y jx] = µ0x

µ1 + x
:
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Figure 1: E [Y jx] is Michaelis-Menten

with µ = (50; :5)T ; best-¯tting exponen-

tial is f (x;µ0) with µ0 = (44; 1:39)T .

(µ0 = argmin
R 5
:5 fE([Y jx]¡ f (x;µ)g2 dx:)



g(x;µ0) = E [Y jx]¡ f (x;µ0)

Asymptotic MSE matrix is MSEN(µ0) =

M¡1
N (µ0)

n
QN(µ0) + bN(µ0)b

T
N(µ0)

o
M¡1
N (µ0);

where z(x;µ) = @f(x;µ)=@µ and where

MN(µ) =
NX
i=1

z(xi;µ)z
T (xi;µ);

QN(µ) =
NX
i=1

z(xi;µ)¾
2(xi)z

T (xi;µ);

bN(µ) =
NX
i=1

z(xi;µ)g(xi;µ):



Loss is IMSE:

L(g; ») =
Z
S
E
·n
Ŷ (x)¡E(Y jx)

o2¸
dx

¼ tr [MSEN(µ0) ¢A(µ0)] +
Z
S
g2(x;µ0)dx;

where A(µ) =
R
S z(x;µ)zT (x;µ)dx:

Sequential approach. Given fxi; YigNi=1:
(i) Compute µ̂N and estimates of g(x), ¾2(x).

(ii) Using these estimates, estimate ¢N+1 (x) =

increase in L if the next design point is x.
(iii) Choose xN+1 = argmin¢N+1 (x).

Estimate g(x) by smoothing the residuals (cubic spline

in 1-dimensional; generalised additive model for higher

dimensions).

Asymptotic results hold for sequentially chosen design

points - Sinha and Wiens (2002).



CLINICAL TRIALS: Subjects are assigned to one of

p treatment groups. Covariates x are measured and

treatment assignments made, according to a random

mechanism.

Optimal assignment probabilities

Pr (treatment ijx) = ½i(x)
are to be determined.

Post treatment response to treatment is

Y = µi + z
T (x)Á+ gi(x) + ¾i"

for regressors z(x), error variances ¾i, response errors

gi(x).



Design » =
n
½1; :::; ½p

o
.

LetWp¡1£p have rows which are mutually orthogonal
and orthogonal to 1. We estimate a complete setWµ

of contrasts of the treatment e®ects fµigpi=1.

Loss is

L
³
½1; :::; ½p

´
= lim
n!1

¯̄̄
nMSE

³
Wµ̂

´¯̄̄
:

² Heckman (1987) - similar approach; di®erent neigh-
bourhood structure. Under realistic conditions

constant assignment probabilities were found to

be optimal.



It turns out that constant probabilities

½i(x) ´ ri
minimize the COV part of MSE.

Optimal frigpi=1 are those which

minimise

P³
ri=¾

2
i

´
Q³
ri=¾

2
i

´ ;
subject to frigpi=1 being a probability distribution.

When p = 2,

ri =
¾i

¾1 + ¾2
:



Sequential assignments. Adjust the (asymptotically)

variance minimising frigpi=1, while also minimising
variance and bias in ¯nite samples.

Suppose there are L levels of the (grouped) covariates

x(1); :::;x(L). If n assignments have been made, and

the (n+ 1)th subject arrives with covariates x¤, then
assign to treatment k with probability

P (kjx¤) / r̂kd¤kb¤k;
where:

(i) r̂k is the optimal r, with the ¾i estimated.

(ii) d¤k measures the reduction in
¯̄̄
COV

³
Wµ̂

´¯̄̄
result-

ing from an assignment to treatment k.

(iii) b¤k is inversely proportional to the (¯nite sample)
bias2 of µ̂, resulting from an assignment to treatment

k.



P (kjx¤) / r̂kd¤kb¤k

Similar to Atkinson (1982) who takes P (kjx¤) / d¤k
(assuming no bias, and that all ¾2i are equal).

Computation of b¤k requires ĝ1(x); :::; ĝp(x); an ad hoc
estimate is the adjusted residual

ĝi(x
(l)) = sign

³
~ei;l
´Ã
~e2i;l +

¾̂2i
ni;l

!1=2
;

where ni;l = # of assignments of x(l) to group i;

~ei;l = median of corresponding residuals.



SPATIAL STUDIES

² Observe Y (t) = X(t)+"(t) at locations t 2 T ½
Rd.

² X(t) random: X(t) = E [X(t)] + ±(t):

² E [X(t)] ¼ zT (t)µ for regressors z(t)

² V AR ["(t)] = f(t) only approximately known (as-
sumed constant?)

² COV £
±(t); ±(t0)

¤
= g

¡
t; t0

¢
only approximately

known (assumed isotropic?)

² Choose n locations from T (withN sites) so as to

minimise the MSE of the predictions, maximised

over neighbourhoods of the assumed f; g and re-

gression model.



NEXT:

² Sequential choice of sites?

² Simulated annealing?
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(i) True response = Exponential, k = 0
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(ii) True response = Exponential, k = .2
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(iii) True response = Michaelis-Menten, k = 0

0 1 2 3 4 5

 x 
(b)

**
15 20 25 30

 N 

0.
8

1.
0

1.
2

1.
4

ro
ot

-im
se

/ 8
.3

1

(a)

(iv) True response = Michaelis-Menten, k = .2
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Figure 2: Fitted response is exponential, true re-

sponse is either exponential or Michaelis-Menten;

n0 = 10 equally spaced sites chosen initially, with

r0 = 3 replicates at each. Then n1 = 6 additional

sites chosen sequentially, with r1 = 4 replicates at

each. (a) Average (over 100 sample paths) values of

(N ¢ IMSE)1=2 for sequential (||), uniform (¢ ¢ ¢)
and D-optimal (¡¢¡¢¡) designs. Variance function is
¾2(x) = 1+ :2(x¡ :5)2. (b) Probability histogram of

all points chosen by the 100 sequential designs; aster-

isks are at the average sites of the D-optimal designs.



ro
ot

-m
se

0 10 20 30

0.
20

0.
24

0.
28

ro
ot

-m
se

0 10 20 30
0.

4
0.

5
0.

6
0.

7

Figure 3: Root-mse of estimated treatment e®ects

versus new subjects; average of 200 simulated runs.

Two treatments, two covariates X1;X2. Het-

eroscedastic errors: ¾21 = 1; ¾22 = 1=4. Dotted line

is Atkinson's method modi¯ed for heteroscedasticity:

P (kjx¤) / r̂kd
¤
k; solid line is the robust method.

Left: g1 (x) = g2 (x) ´ 0 (¯tted model correct).

Right: gi (x) / (¡1)ix1x2.
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Figure 4: 4£ 4 grid of possible locations; 5 sites cho-
sen to minimise trace of MSE matrix. Fitted model

exact: constant measurement errors, isotropic covari-

ance function exp
¡¡:2 °°t¡ t0°°¢, regressors z(t) =

(1; t1; t2)
T .
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Figure 5: Same ¯tted model, but loss is maximised

over neighbourhoods of the model, then minimised

over choices of locations.


