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Review of classical L2-invariants

Let G→ X → X be a G-covering of a connected finite
CW -complex X .
The cellular chain complex of X is a finitely generated free
ZG-chain complex:

· · ·
cn−1−−−→

⊕
In

ZG cn−→
⊕
in−1

ZG
cn−1−−−→ · · ·

The associated L2-chain complex

C(2)
∗ (X ) := L2(G)⊗ZG C∗(X )

has Hilbert spaces with isometric linear G-action as chain
modules and bounded G-equivariant operators as differentials

· · ·
c(2)

n−1−−−→
⊕

In

L2(G)
c(2)

n−−→
⊕
in−1

L2(G)
c(2)

n−1−−−→ · · ·
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Definition (L2-homology and L2-Betti numbers)

Define the n-th L2-homology to be the Hilbert space

H(2)
n (X ) := ker(c(2)

n )/im(c(2)
n+1).

Define the n-th L2-Betti number

b(2)
n (X ) := dimN (G)

(
H(2)

n (X )
)
∈ R≥0.
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The original notion is due to Atiyah an was motivated by index
theory. He defined for a G-covering M → M of a closed
Riemannian manifold

b(2)
n (M) := lim

t→∞

∫
F

tr
(
e−t ·∆n (x , x)

)
dvolM .

If G is finite, we have

b(2)
n (X ) =

1
|G|
· bn(X ).

If G = Z, we have

b(2)
n (X ) = dimC[Z](0)

(
C[Z](0) ⊗C[Z] Hn(X ;C)

)
∈ Z.
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In the sequel 3-manifold means a prime connected compact
orientable 3-manifold with infinite fundamental group whose
boundary is empty or a union of tori and which is not S1 × D2 or
S1 × S2.

Theorem (Lott-Lück)

For every 3-manifold M all L2-Betti numbers b(2)
n (M̃) vanish.

We are interested in the case where all L2-Betti numbers vanish,
since then a very powerful secondary invariant comes into play,
the so called L2-torsion.
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L2-torsion can be defined analytical in terms of the spectrum of
the Laplace operator, generalizing the notion of analytic
Ray-Singer torsion. It can also be defined in terms of the cellular
ZG-chain complex, generalizing of the Reidemeister torsion.

The definition of L2-torsion is based on the notion of the
Fuglede-Kadison determinant which is a generalization of the
classical determinant to the infinite-dimensional setting. It is
defined for an element f ∈ N (G) to be the non-negative real
number

det(2)(f ) = exp
(

1
2
·
∫

ln(λ) dνf∗f

)
∈ R>0

where νf∗f is the spectral measure of the positive operator f ∗f .

If G is finite, then det(2)(f ) = |det(f )|1/|G|.
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Definition (L2-torsion)

Suppose that X is L2-acyclic, i.e., all L2-Betti numbers b(2)
n (X ) vanish.

Let ∆
(2)
n : C(2)

n (X )→ C(2)
n (X ) be the n-Laplace operator given by

c(2)
n+1 ◦

(
c(2)

n
)∗

+
(
c(2)

n−1

)∗ ◦ c(2)
n .

Define the L2-torsion

ρ(2)(X ) :=
∑
n≥0

(−1)n · n · ln
(
det(2)(∆

(2)
n )
)
∈ R.
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Theorem (Lück-Schick)
Let M be a 3-manifold. Let M1, M2, . . . , Mm be the hyperbolic pieces in
its Jaco-Shalen decomposition.

Then

ρ(2)(M̃) := − 1
3π
·

m∑
i=1

vol(Mi).
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Universal L2-torsion

Definition (K w
1 (ZG))

Let K w
1 (ZG) be the abelian group given by:

generators
If f : ZGm → ZGm is a ZG-map such that the induced bounded
G-equivariant L2(G)m → L2(G)m map is a weak isomorphism, i.e.,
the dimensions of its kernel and cokernel are trivial, then it
determines a generator [f ] in K w

1 (ZG).
relations [(

f1 ∗
0 f2

)]
= [f1] + [f2];

[g ◦ f ] = [f ] + [g].

Define Whw (G) := K w
1 (ZG)/{±g | g ∈ G}.
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Definition (Universal L2-torsion)

Let G→ X → X be a G-covering of a finite CW -complex. Suppose
that X is L2-acyclic, i.e., b(2)

n (X ) vanishes for all n ∈ Z.

Then its universal L2-torsion is defined as an element

ρ
(2)
u (X ) ∈ K w

1 (ZG).

The universal L2-torsion is defined by the same expression as the
L2-torsion, but now using the fact that the combinatorial Laplace
operator can be thought of as an element in K w

1 (Z[G]), namely by

ρ
(2)
u (X ) :=

∑
n≥0

(−1)n · n · [∆c
n] ∈ K w

1 (ZG).

for ∆c
n := cn+1 ◦ c∗n + c∗n−1 ◦ cn.
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The universal L2-torsion is a simple homotopy invariant.

It satisfies useful sum formulas and product formulas. There are
also formulas for appropriate fibrations and S1-actions.

If G is finite, we rediscover essentially the classical Reidemeister
torsion.

Many other invariants come from the universal L2-torsion by
applying a homomorphism K w

1 (ZG)→ A of abelian groups.

For instance, the Fuglede-Kadison determinant defines a
homomorphism

det(2) : Whw (ZG)→ R

which maps the universal L2-torsion ρ(2)
u (X ) to the (classical)

L2-torsion ρ(2)(X ).
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The fundamental square and the Atiyah Conjecture

The fundamental square is given by the following inclusions of
rings

ZG //

��

N (G)

��

D(G) // U(G)

U(G) is the algebra of affiliated operators. Algebraically it is just
the Ore localization of N (G) with respect to the multiplicatively
closed subset of non-zero divisors.
D(G) is the division closure of ZG in U(G), i.e., the smallest
subring of U(G) containing ZG such that every element in D(G),
which is a unit in U(G), is already a unit in D(G) itself.
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If G is finite, its is given by

ZG //

��

CG

id
��

QG // CG

If G = Z, it is given by

Z[Z] //

��

L∞(S1)

��

Q[Z](0)
// L(S1)
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If G is elementary amenable torsionfree, then D(G) can be
identified with the Ore localization of ZG with respect to the
multiplicatively closed subset of non-zero elements.

In general the Ore localization does not exist and in these cases
D(G) is the right replacement.
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Conjecture (Atiyah Conjecture for torsionfree groups)
Let G be a torsionfree group. It satisfies the Atiyah Conjecture if D(G)
is a skew-field.

Fix a natural number d ≥ 5. Then a finitely generated torsionfree
group G satisfies the Atiyah Conjecture if and only if for any
G-covering M → M of a closed Riemannian manifold of dimension
d we have b(2)

n (M) ∈ Z for every n ≥ 0.
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Theorem (Linnell, Schick)
1 Let C be the smallest class of groups which contains all free

groups, is closed under extensions with elementary amenable
groups as quotients and directed unions.
Then every torsionfree group G which belongs to C satisfies the
Atiyah Conjecture.

2 If G is residually torsionfree elementary amenable, then it satisfies
the Atiyah Conjecture.

This theorem and results by Waldhausen show for the
fundamental group π of a 3-manifold (with the exception of some
graph manifolds) that it satisfies the Atiyah Conjecture and that
Wh(π) vanishes.
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Identifying K w
1 (ZG) and K1(D(G))

Theorem (Linnell-Lück)
If G belongs to C, then the natural map

K w
1 (ZG)

∼=−→ K1(D(G))

is an isomorphism.

Its proof is based on identifying D(G) as an appropriate Cohn
localization of ZG and the investigating localization sequences in
algebraic K -theory.
There is a Dieudonné determinant which induces an isomorphism

detD : K1(D(G))
∼=−→ D(G)×/[D(G)×,D(G)×].
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In particular we get for G = Z

K w
1 (Z[Z]) ∼= Q[Z](0) \ {0}.

It turns out that then the universal torsion is the same as the
Alexander polynomial of an infinite cyclic covering, as it occurs for
instance in knot theory.
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Twisting L2-invariants

Consider a CW -complex X with π = π1(M). Fix an element
φ ∈ H1(X ;Z) = hom(π;Z).
For t ∈ (0,∞), let φ∗Ct be the 1-dimensional π-representation
given by

w · λ := tφ(w) · λ for w ∈ π, λ ∈ C.
One can twist the L2-chain complex of X with this representation,
or, equivalently, apply the following ring homomorphism to the
cellular ZG-chain complex before passing to the Hilbert space
completion

CG→ CG,
∑
g∈G

λg · g 7→
∑
g∈G

λ · tφ(g) · g.

Notice that for irrational t the relevant chain complexes do not
have coefficients in QG anymore and the Determinant Conjecture
does not apply. Moreover, the Fuglede-Kadison determinant is in
general not continuous.
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Thus we obtain the φ-twisted L2-torsion function

ρ(X̃ ;φ) : (0,∞)→ R

sending t to the Ct -twisted L2-torsion.

Its value at t = 1 is just the L2-torsion.

On the analytic side this corresponds for closed Riemannian
manifold M to twisting with the flat line bundle M̃ ×π Ct → M. It is
obvious that some work is necessary to show that this is a
well-defined invariant since the π-action on Ct is not isometric.
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Theorem (Lück)

Suppose that X̃ is L2-acyclic.

1 The L2torsion function ρ(2) := ρ(2)(X̃ ;φ) : (0,∞)→ R is
well-defined.

2 The limits limt→∞
ρ(2)(t)
ln(t) and limt→0

ρ(2)(t)
ln(t) exist and we can define

the degree of φ
deg(X ;φ) ∈ R

to be their difference.
3 There is a φ-twisted Fuglede-Kadison determinant

det(2)
tw,φ : K w

1 (ZG)→ map((0,∞),R)

which sends ρ(2)
u (X̃ ) to ρ(2)(X̃ ;φ).
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Definition (Thurston norm)

Let M be a 3-manifold and φ ∈ H1(M;Z) be a class. Define its
Thurston norm

xM(φ) = min{χ−(F ) | F embedded surface in M dual to φ}

where
χ−(F ) =

∑
C∈π0(M)

max{−χ(C),0}.

Thurston showed that this definition extends to the real vector
space H1(M;R) and defines a seminorm on it.

If F → M
p−→ S1 is a fiber bundle and φ = π1(p), then

xM(φ) = χ(F ).
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Theorem (Friedl-Lück)

Let M be a 3-manifold. Then for every φ ∈ H1(M;Z) we get the equality

deg(M;φ) = xM(φ).
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Polytopes

Consider a finitely generated abelian free abelian group A. Let
AR := R⊗Z A be the real vector space containing A as a spanning
lattice;
A polytope P ⊆ AR is a convex bounded subset which is the
convex hull of a finite subset S;
It is called integral, if S is contained in A;
The Minkowski sum of two polytopes P and Q is defined by

P + Q = {p + q | p ∈ P,q ∈ Q};

It is cancellative, i.e., it satisfies P0 + Q = P1 + Q =⇒ P0 = P1;
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The Newton polytope
N(p) ⊆ Rn

of a polynomial

p(t1, t2, . . . , tn) =
∑

i1,...,in

ai1,i2,...,in · t
i1
1 t i2

2 · · · t
in
n

in n variables t1, t2, . . . , tn is defined to be the convex hull of the
elements {(i1, i2, . . . in) ∈ Zn | ai1,i2,...,in 6= 0};

One has
N(p · q) = N(p) + N(q).
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Definition (Polytope group)
Let P(A) be the Grothendieck group of the abelian monoid of integral
polytopes in AR.

For A = Zn we obtain a well-defined homomorphism of abelian
groups (

Q[Zn](0)

)× → P(A),
p
q
7→ [N(p)]− [N(q)].
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Polytope homomorphism

Consider the projection

pr : G→ H1(G)f := H1(G)/ tors(H1(G)).

Let K be its kernel.
After a choice of a set-theoretic section of pr we get isomorphisms

ZK ∗ H1(G)f
∼=−→ ZG;

S−1(D(K ) ∗ H1(G)f
) ∼=−→ D(G),

where here and in the sequel S−1 denotes Ore localization with
respect to the multiplicative closed set of non-trivial elements.
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Given x =
∑

h∈H1(G)f
uh · h ∈ D(K ) ∗ H1(G)f , define its support

supp(x) := {h ∈ H1(G)f | h ∈ H1(G)f ),uh 6= 0}.

The convex hull of supp(x) defines a polytope

P(x) ⊆ R⊗Z H1(G)f = H1(M;R).

We have P(x · y) = P(x) + P(y) for x , y ∈ (D(K ) ∗ H1(G)f .
Hence we can define a homomorphism of abelian groups

P ′ :
(

S−1(D(K ) ∗ H1(G)f
))×
→ P(H1(G)f ),

by sending x · y−1 to [P(x)]− [P(y)].
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The composite

K w
1 (ZG)

∼=−→ K1(D(G))
∼=−→ D(G)×

∼=−→
(

S−1(D(K ) ∗ H1(G)f
))×

P′−→ P(H1(G)f )

factories to the polytope homomorphism

P : Whw (G)→ P(H1(G)f ).
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Definition (Thurston polytope)
Let M be a 3-manifold. Define the Thurston polytope to be subset of
H1(M;R)

T (M) := {φ ∈ H1(M;R) | xM(φ) ≤ 1}.

Theorem (Friedl-Lück)

Let M be a 3-manifold. Then the image of the universal L2-torsion
ρ

(2)
u (M̃) under the polytope homomorphism

P : Whw (π1(M))→ P(H1(π1(M))f )

is represented by the dual of the Thurston polytope, which is an
integral polytope in R⊗Z H1(π1(M))f = H1(M;R) = H1(M;R)∗.
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Higher order Alexander polynomials

Higher order Alexander polynomials were introduced for a
covering G→ M → M of a 3-manifold by Harvey and Cochran,
provided that G occurs in the rational derived series of π1(M).

At least the degree of these polynomials is a well-defined invariant
of M and G.

We can extend this notion of degree also to the universal covering
of M and can prove the conjecture that the degree coincides with
the Thurston norm.
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Group automorphisms

Theorem (Lück)
Let f : X → X be a self homotopy equivalence of a finite connected
CW-complex. Let Tf be its mapping torus.

Then all L2-Betti numbers b(2)
n (T̃f ) vanish.

Definition (Universal torsion for group automorphisms)
Let f : G→ G be a group automorphism of the group G. Suppose that
there is a finite model for BG, the Whitehead group Wh(G) vanishes,
and G satisfies the Atiyah Conjecture. Then we can define the
universal L2-torsion of f by

ρ
(2)
u (f ) := ρ(2)(T̃f ;N (G of Z)) ∈Whw (G of Z)

This seems to be a very powerful invariant which needs to be
investigated further.
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It has nice properties, e.g., it depends only on the conjugacy class
of f , satisfies a sum formula and a formula for exact sequences.

If G is amenable, it vanishes.

If G is the fundamental group of a compact surface F and f comes
from an automorphism a : F → F , then Tf is a 3-manifold and a lot
of the material above applies.

For instance, if a is irreducible, ρ(2)
u (f ) detects whether a is

pseudo-Anosov since we can read off the sum of the volumes of
the hyperbolic pieces in the Jaco-Shalen decomposition of Tf .
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Suppose that H1(f ) = id. Then there is an obvious projection

pr : H1(G of Z)f = H1(G)f × Z→ H1(G)f .

Let
P(f ) ∈ P(R⊗Z H1(G)f )

be the image of ρ(2)
u (f ) under the composite

Whw (G o Z)
P−→ P(R⊗Z H1(G of Z))

P(pr)−−−→ P(R⊗Z H1(G)f )

What are the main properties of this polytope? In which situations
can it be explicitly computed? The case, where F is a finitely
generated free group, is of particular interest.
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L2-Euler characteristic

Definition (L2-Euler characteristic)
Let Y be a G-space. Suppose that

h(2)(Y ;N (G)) :=
∑
n≥0

b(2)
n (Y ;N (G)) <∞.

Then we define its L2-Euler characteristic

χ(2)(Y ;N (G)) :=
∑
n≥0

(−1)n · b(2)
n (Y ;N (G)) ∈ R.
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Definition (φ-L2-Euler characteristic)

Let X be a connected CW -complex. Suppose that X̃ is L2-acyclic.
Consider an epimorphism φ : π = π1(M)→ Z. Let K be its kernel.
Suppose that G is torsionfree and satisfies the Atiyah Conjecture.

Define the φ-L2-Euler characteristic

χ(2)(X̃ ;φ) := χ(2)(X̃ ;N (K )) ∈ R.

Notice that X̃/K is not a finite CW -complex. Hence it is not
obvious but true that h(2)(X̃ ;N (K )) <∞ and χ(2)(X̃ ;φ) is a
well-defined real number.

The φ-L2-Euler characteristic has a bunch of good properties, it
satisfies for instance a sum formula, product formula and is
multiplicative under finite coverings.
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Let f : X → X be a selfhomotopy equivalence of a connected finite
CW -complex. Let Tf be its mapping torus. The projection Tf → S1

induces an epimorphism φ : π1(Tf )→ Z = π1(S1).

Then T̃f is L2-acyclic and we get

χ(2)(T̃f ;φ) = χ(X ).

Theorem (Friedl-Lück)
Let M be a 3-manifold and φ : π1(M)→ Z be an epimorphism. Then

−χ(2)(M̃;φ) = xM(φ).
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Summary

We can assign to a finite CW -complex X its universal L2-torsion

ρ(2)(X̃ ) ∈Whw (π),

provided that X̃ is L2-acyclic and π satisfies the Atiyah Conjecture.

These assumptions are always satisfied for 3-manifolds.

The Alexander polynomial is a special case.

One can twist the L2-torsion by a cycle φ ∈ H1(M) and obtain a
L2-torsion function from which one can read of the Thurston norm.

One can read of from the universal L2-torsion a polytope which for
a 3-manifold is the dual of the Thurston polytope.
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Summary (continued)

The Thurston norm can also be read of from an L2-Euler
characteristic.

The higher order Alexander polynomials due to Harvey and
Cochrane are special cases of the the universal L2-torsion and we
can prove the conjecture that their degree is the Thurston norm.

The universal L2-torsion seems to give an interesting invariant for
elements in Out(Fn) and mapping class groups.
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