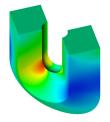


Isogeometric Analysis

T.J.R. Hughes



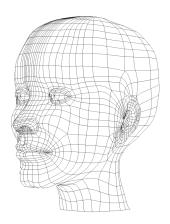
Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

Co-authors: Y. Bazilevs, V. Calo, J.A. Cottrell, H. Gomez Diaz, A. Reali, G. Sangalli, J. Zhang

PIMS ~ Syncrude Lecture University of Alberta, January 18, 2008

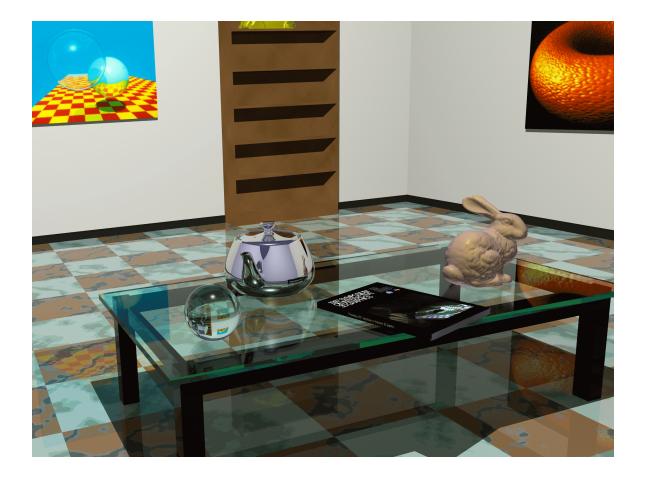
Outline

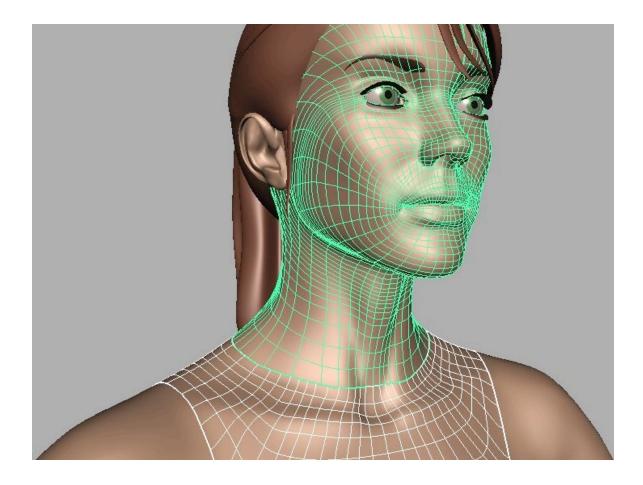
- Isogeometric analysis
- NURBS
- Structural vibrations
- Wave propagation
- Phase field modeling
- Fluid-structure interaction
- Cardiovascular modeling
- T-Splines
- Conclusions

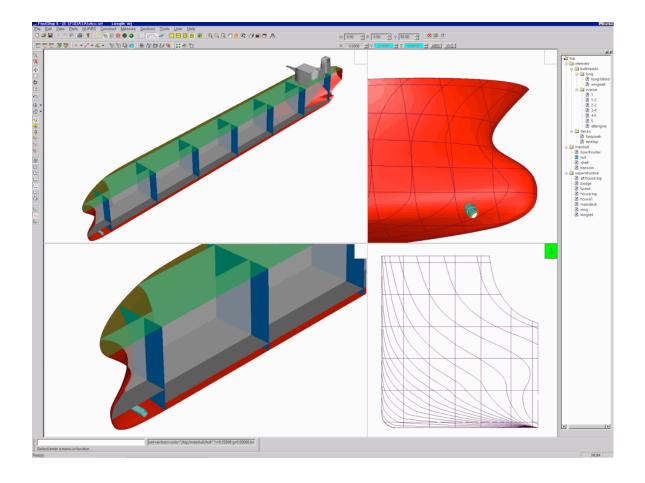


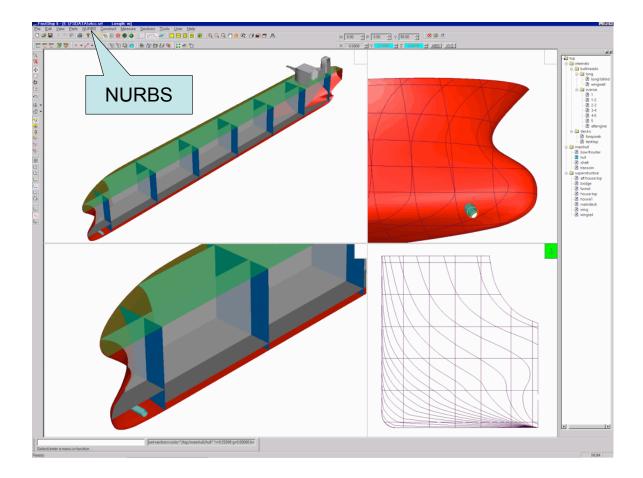
Isogeometric Analysis

- Based on technologies (e.g., NURBS) from computational geometry used in:
 - Design
 - Animation
 - Graphic art
 - Visualization
- Includes standard FEA as a special case, but offers other possibilities:
 - Precise and efficient geometric modeling
 - Simplified mesh refinement
 - Superior approximation properties
 - Integration of design and analysis









Isogeometric Analysis (NURBS, T-Splines, etc.)

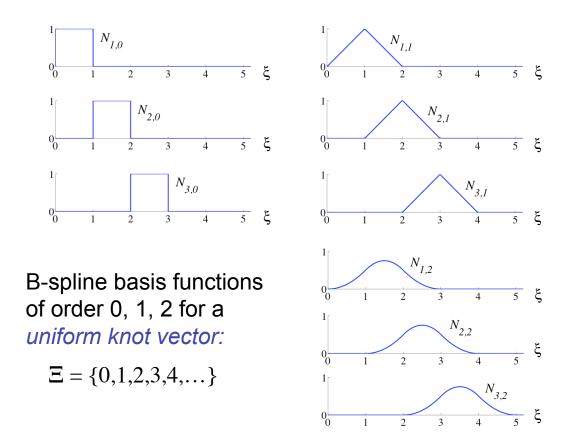
FEA

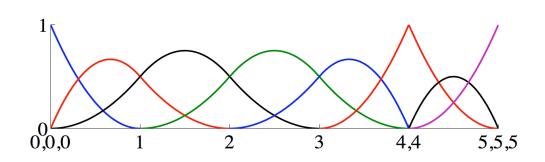
h-, p-refinement

k-refinement

B-spline Basis Functions

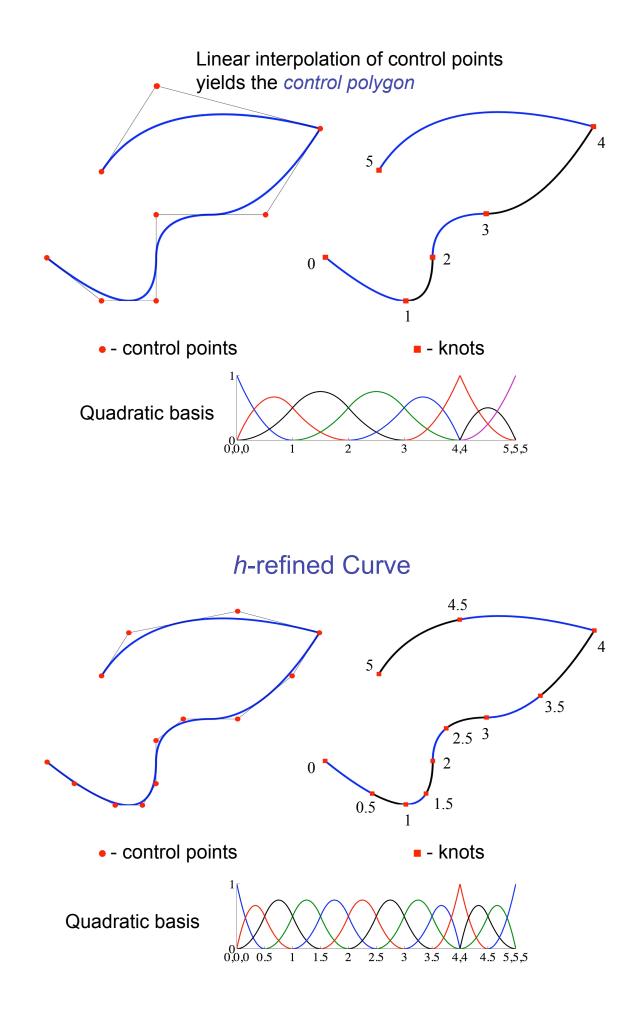
$$N_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_i \leq \xi < \xi_{i+1}, \\ 0 & \text{otherwise} \end{cases}$$
$$N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi} N_{i+1,p-1}(\xi)$$

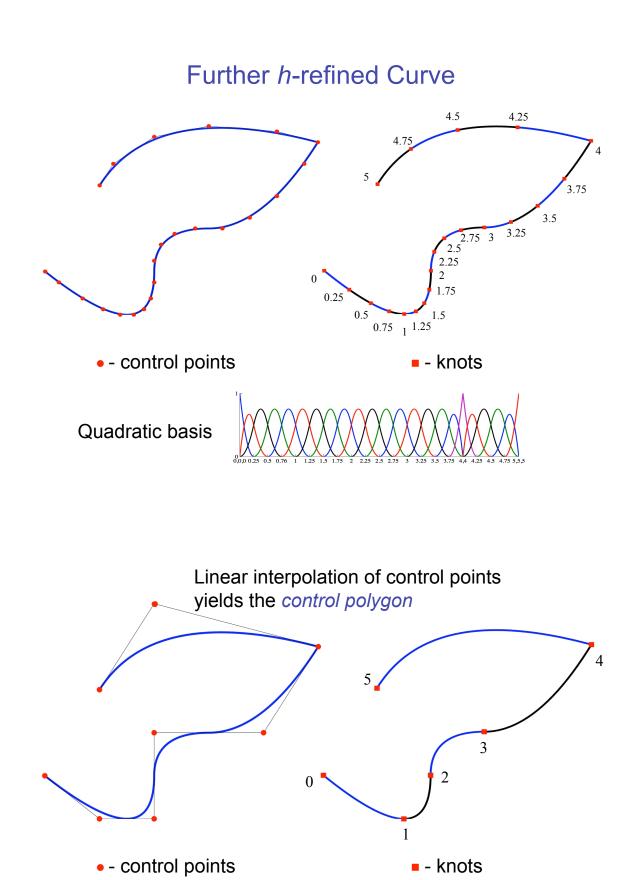




Quadratic (*p*=2) basis functions for an *open, non-uniform knot vector:*

 $\Xi = \{0,0,0,1,2,3,4,4,5,5,5\}$





Quadratic basis

0,0,0

1

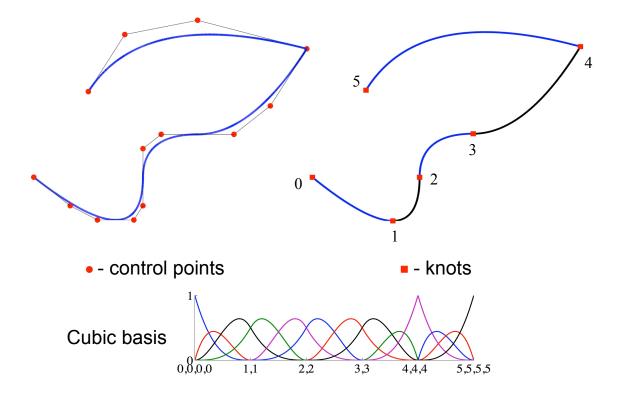
2

3

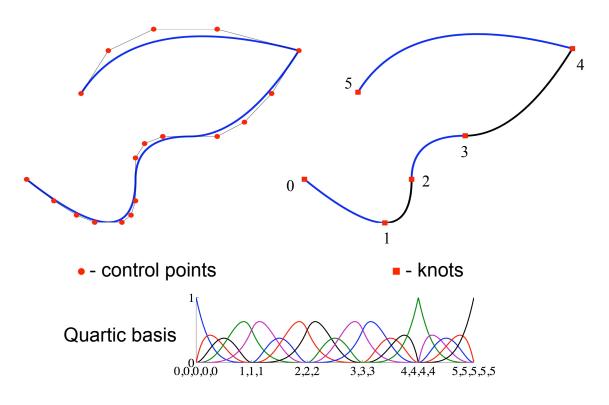
4,4

5,5,5

Cubic *p*-refined Curve

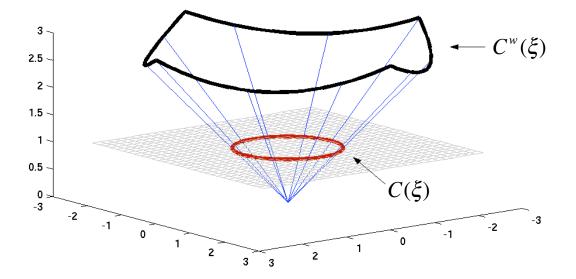


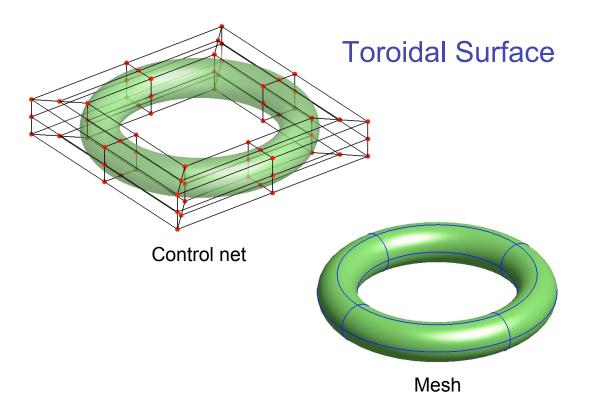
Quartic *p*-refined Curve

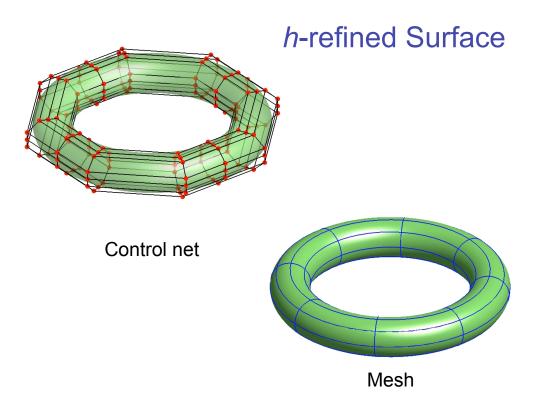


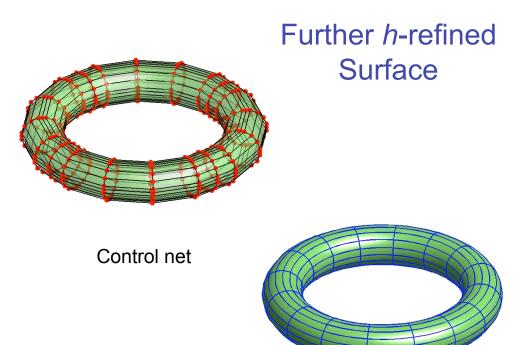
Non-Uniform Rational B-splines

Circle from 3D Piecewise Quadratic Curves

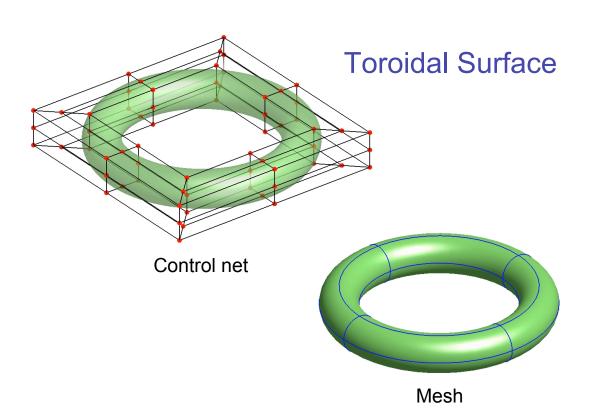


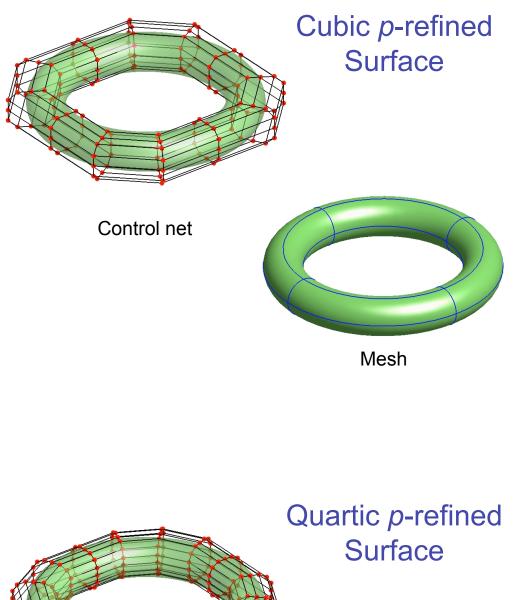




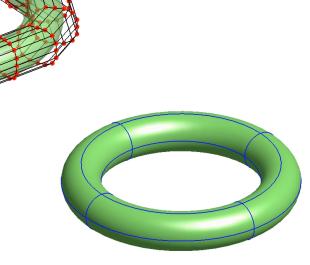


Mesh



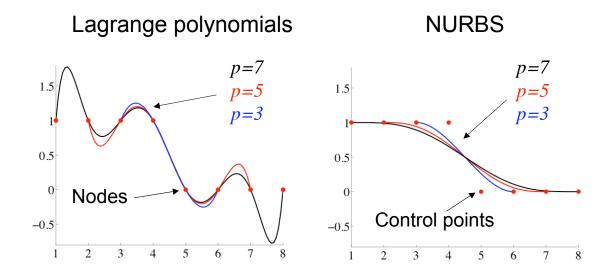


Control net



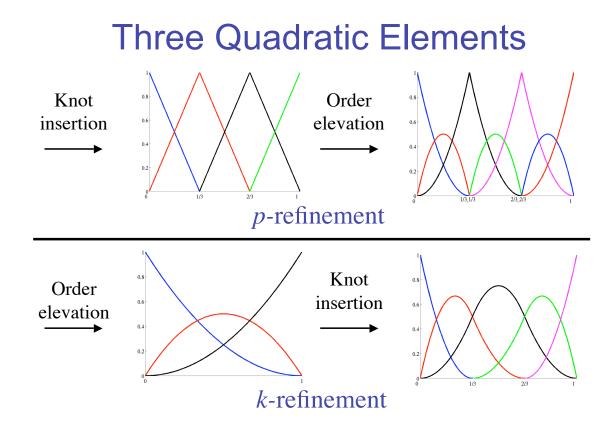
Mesh

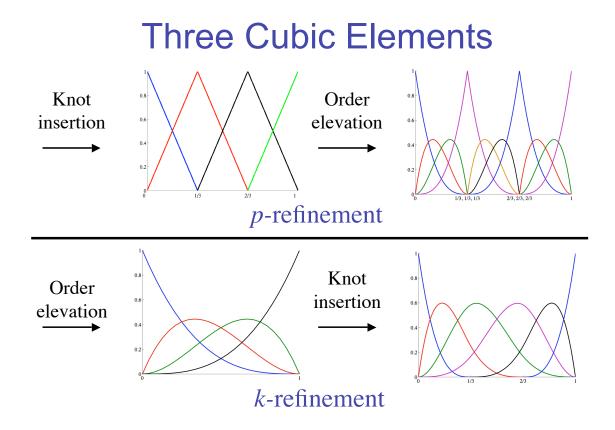
Variation Diminishing Property

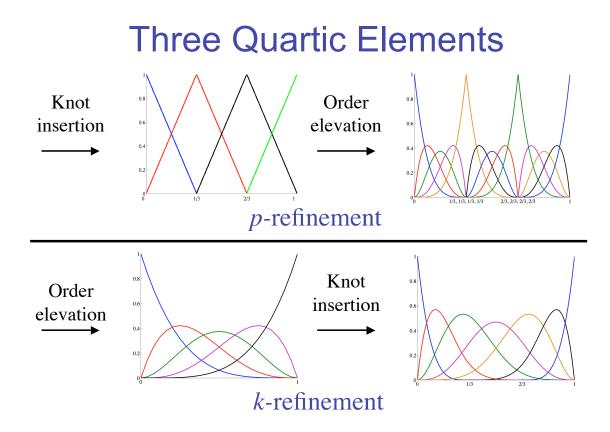


Finite Element Analysis and Isogeometric Analysis

 Compact support
 Partition of unity
 Affine covariance
 Isoparametric concept
 Patch tests satisfied

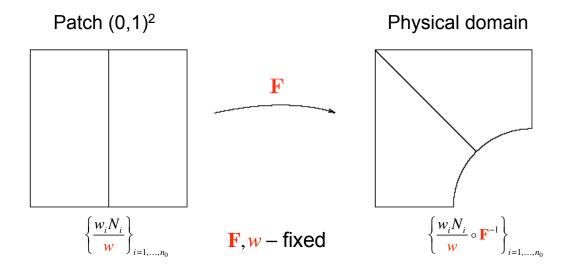




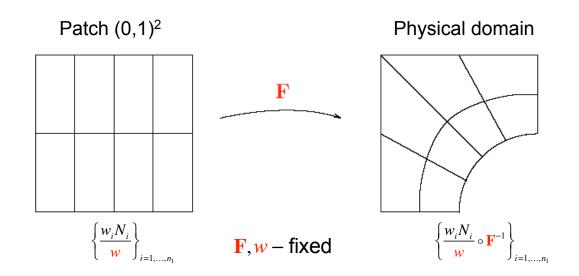


Mathematical Theory of *h*-refinement

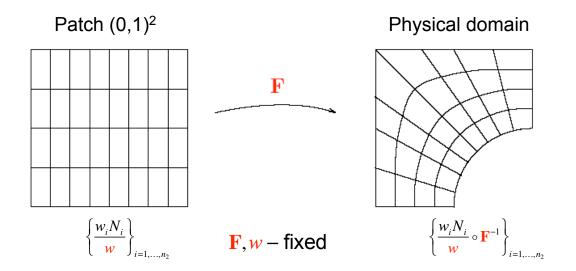
Coarsest Discretization



First *h*-refinement



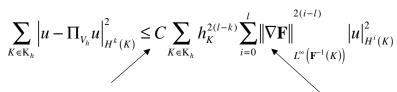
Second *h*-refinement



Approximation with NURBS

Theorem

Let k, l, be the integer indices such that $0 \le k \le l \le p + 1$. Let $u \in H^{l}(\Omega)$, then



Positive constant, depends on p, shape of Ω (but not its size), and shape regularity of the mesh.

Factors which render error estimate dimensionally consistent.

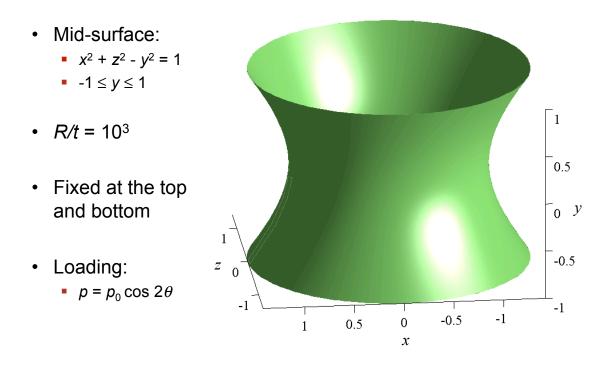
Error Estimates

- Strongly elliptic problems:
 - Elasticity, structures
- Stabilized/multiscale methods:
 - Advection-diffusion
 - Incompressible elasticity, Stokes flow
- BB-stable mixed elements:
 - Incompressible elasticity, Stokes flow
- Numerical tests confirm and go beyond theoretical results

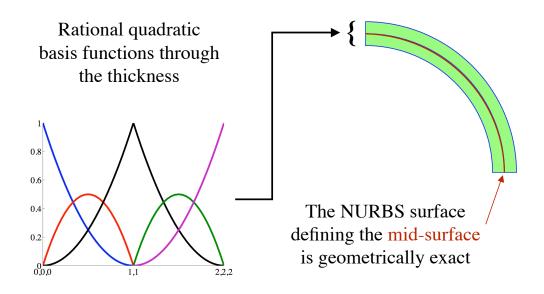
Isogeometric Structural Analysis

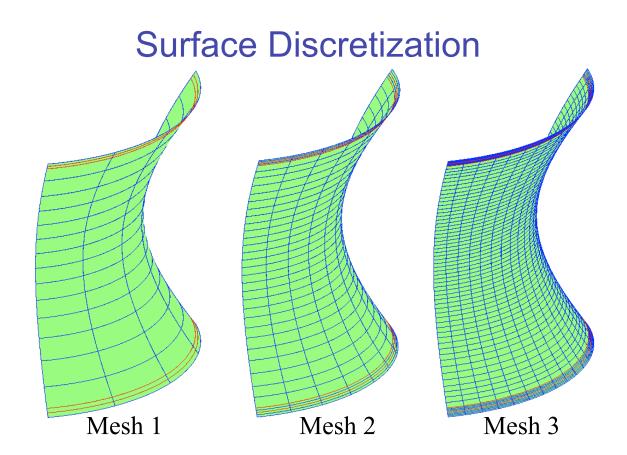
 Isoparametric NURBS elements exactly represent all *rigid body motions* and *constant strain states*

Hyperboloidal Shell



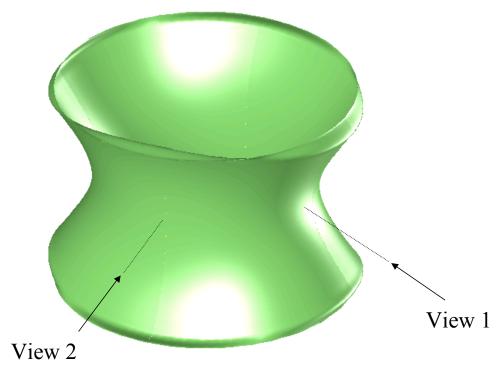
Thickness Discretization





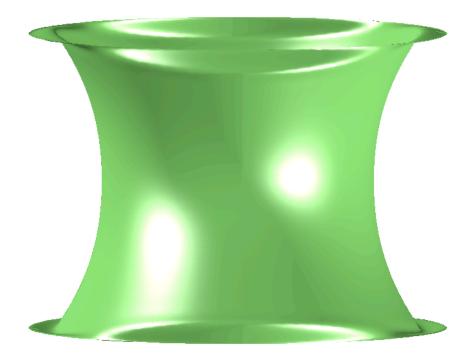
Deformed Shell

(displacement amplification factor of 10)



View 1

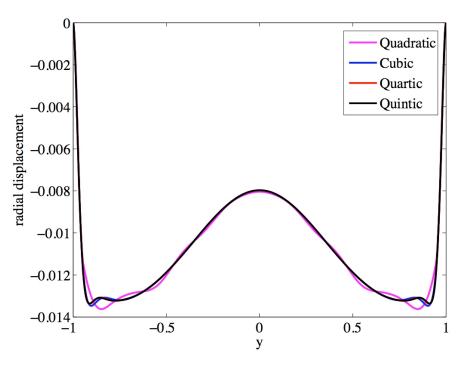
(displacement amplification factor of 10)

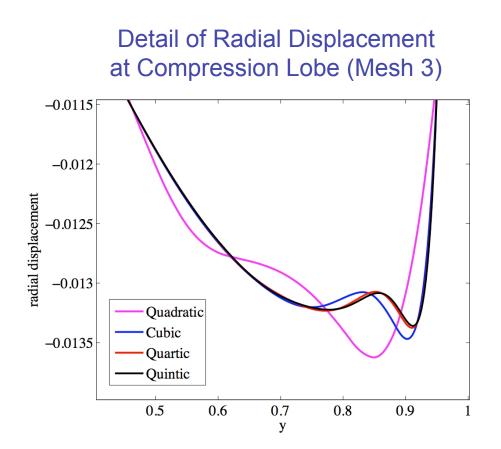


View 2

(displacement amplification factor of 10)

Radial Displacement at Compression Lobe (Mesh 3)

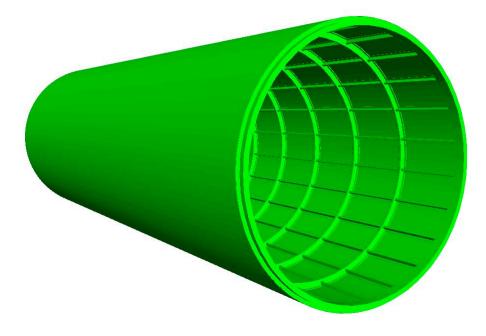




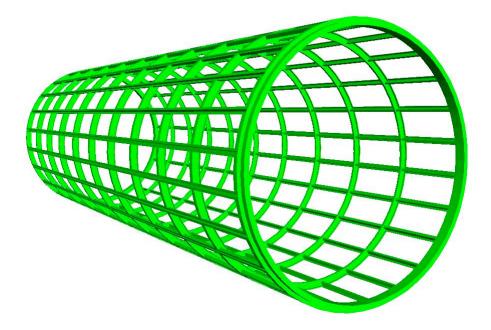
Isogeometric Vibration Analysis

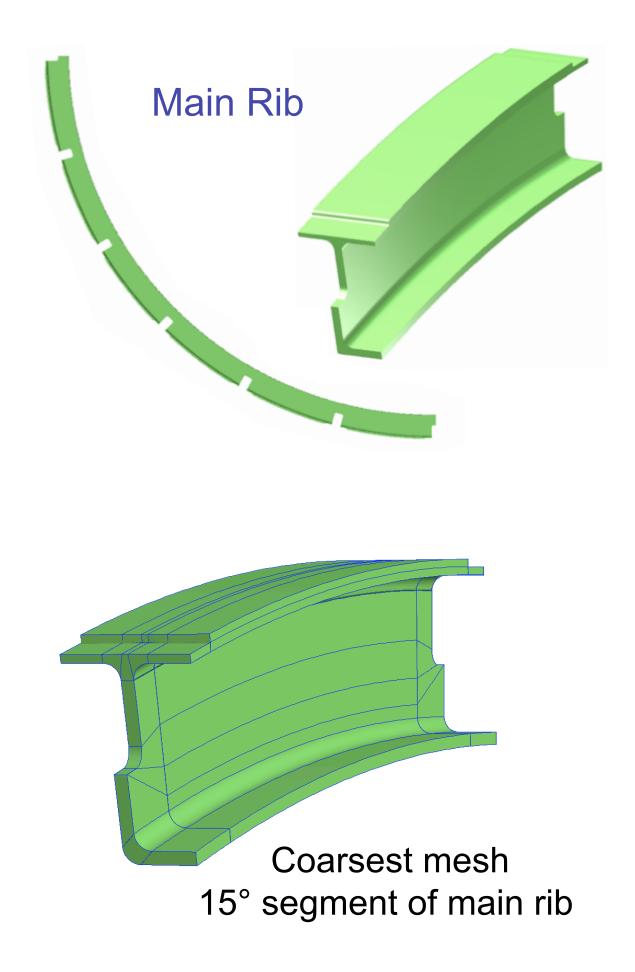
NASA Aluminum Testbed Cylinder (ATC)

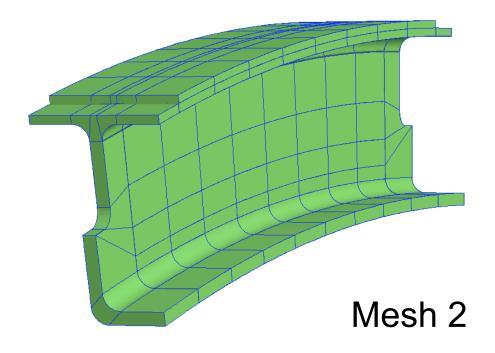
NASA ATC Frame and Skin

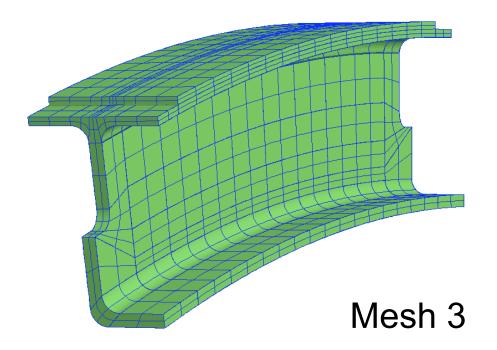


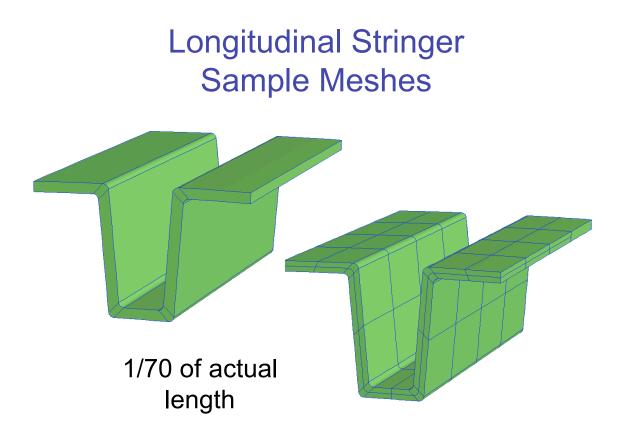
NASA ATC Frame



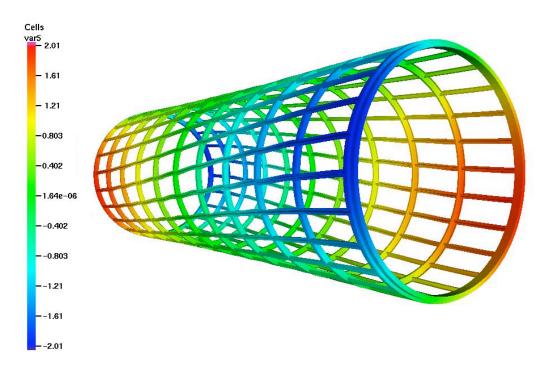




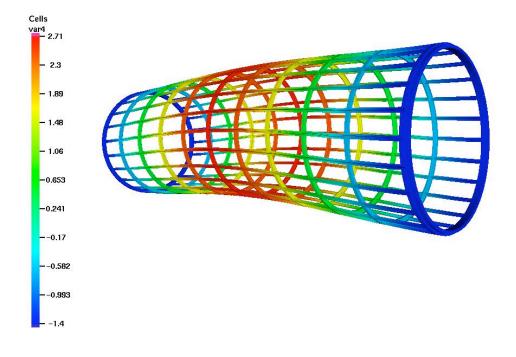




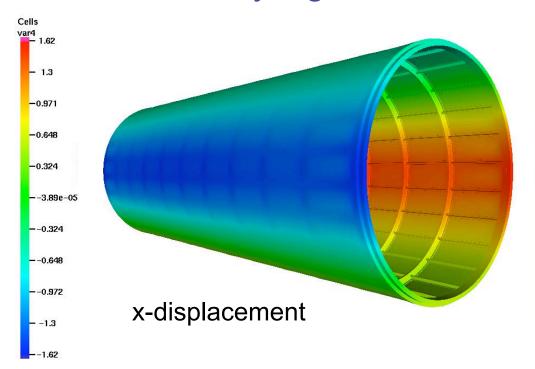
First Torsion Mode



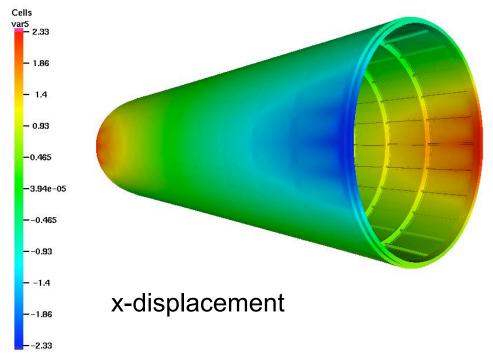
First Bending Mode



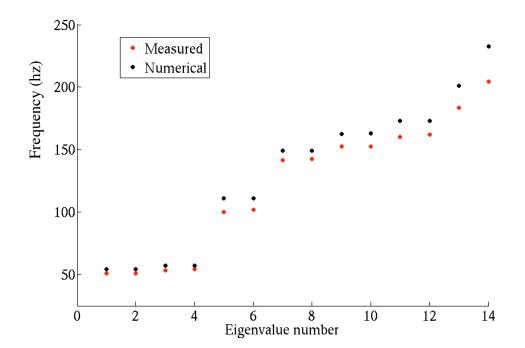
First Rayleigh Mode



First Love Mode



ATC Frame and Skin

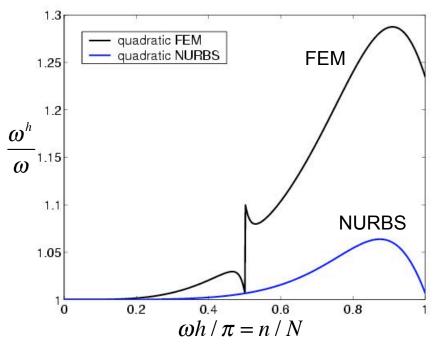


Vibration of a Finite Elastic Rod with Fixed Ends

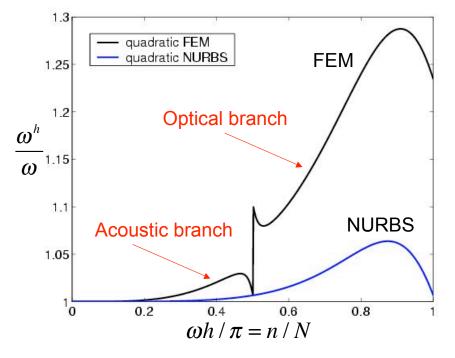
Problem:

 $\begin{cases} u_{,xx} + \omega^2 u = 0 & \text{for } x \in (0,1) \\ u(0) = u(1) = 0 \end{cases}$ Natural frequencies: $\omega_n = n\pi$, with n = 1, 2, 3, ...Frequency errors: ω_n^h / ω_n

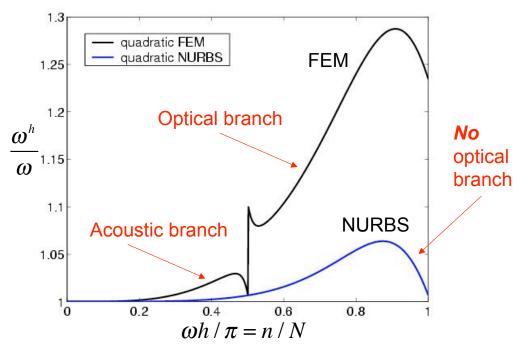
Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors



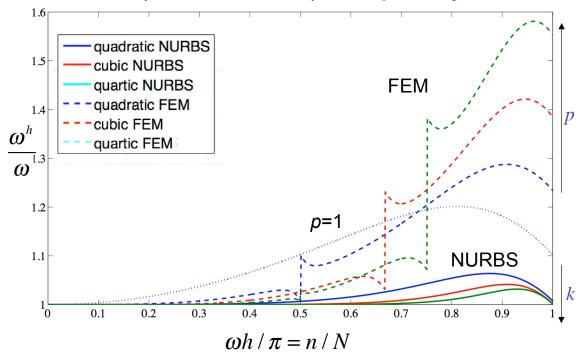
Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors



Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors



Comparison of FEM (*p*-refinement) and NURBS (*k*-refinement) Frequency Errors



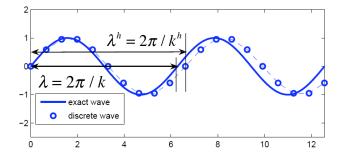
Wave Propagation in an Infinite Domain

Helmholtz equation:

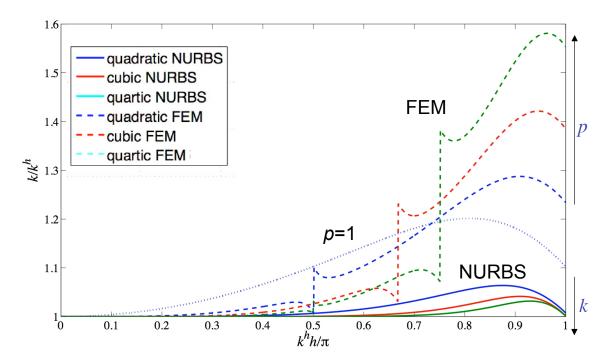
$$u_{xx} + k^2 u = 0$$
 for $x \in (-\infty, +\infty)$

Wave number: k

Phase error: k / k^h



Helmholtz Equation Phase Error

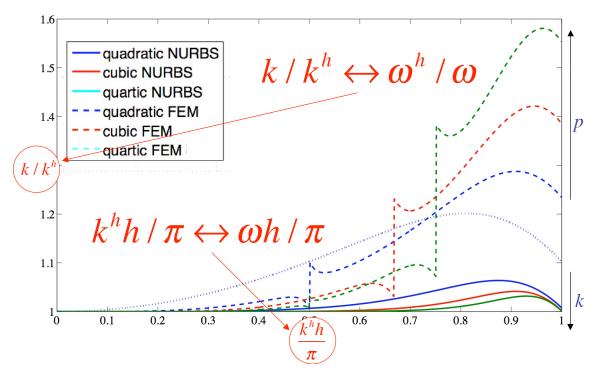


Duality Principle

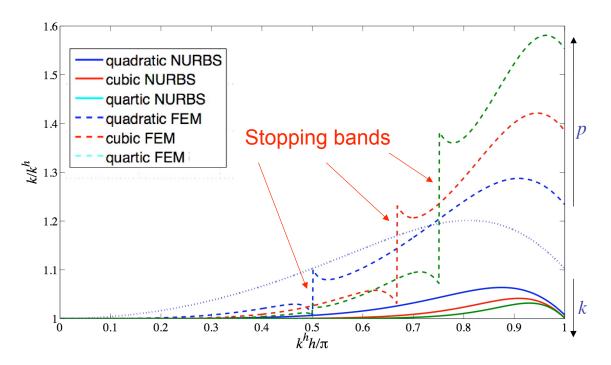
- Relationship between wave propagation in an *infinite* domain and vibration of a *finite* structure
- Frequency errors and phase errors are related by a change of variables:

 $\frac{k / k^{h} \leftrightarrow \omega^{h} / \omega}{k^{h} h / \pi \leftrightarrow \omega h / \pi}$

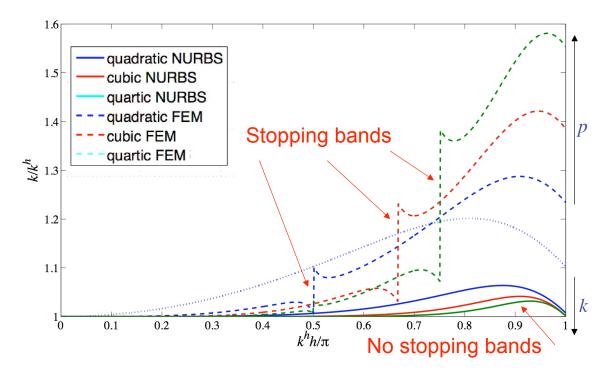
Duality of Frequency and Phase Errors



Helmholtz Equation Phase Error



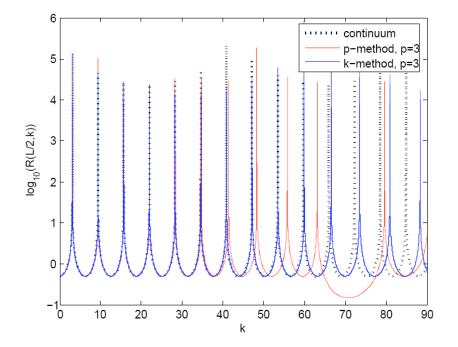
Helmholtz Equation Phase Error



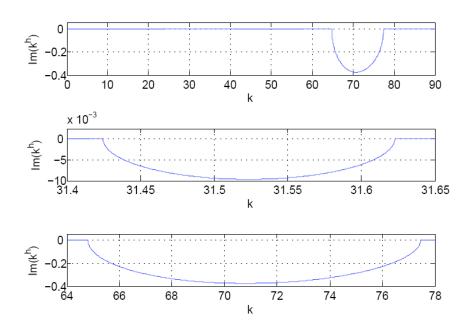
Helmholtz equation in 1D, Dirichlet boundary conditions

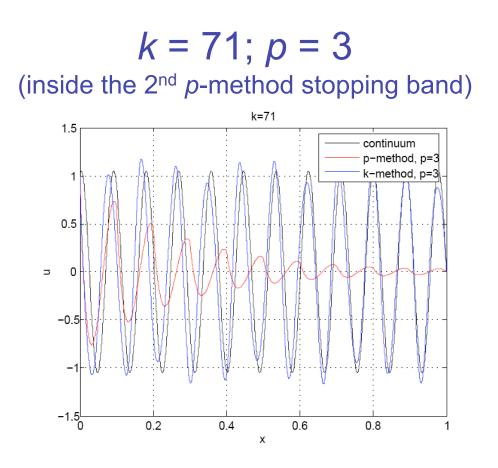
(31 control points for p = 3)

Response spectrum for p = 3 at x = L/2



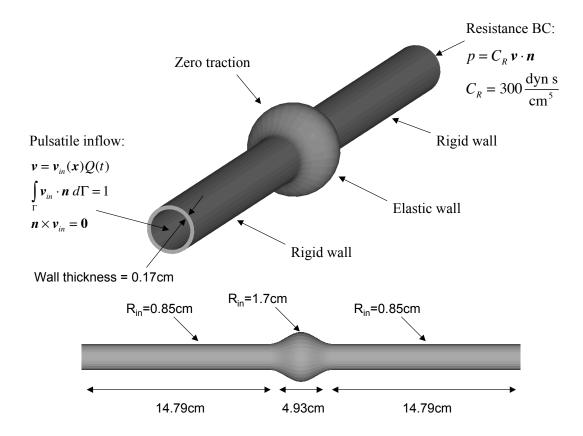
p-method stopping band for p = 3



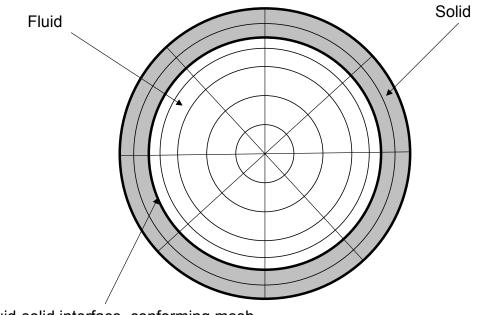


Fluid-Structure Interaction

- Incompressible viscous fluids (ALE description) and nonlinear solids (Lagrangian description)
- Residual-based *variational multiscale formulation*, applicable to laminar and turbulent flows
- Both fluid and solid may undergo large motions
- Geometry and kinematics are *fully compatible* across fluid-structure interfaces
- Strongly coupled, monolithic solution algorithm

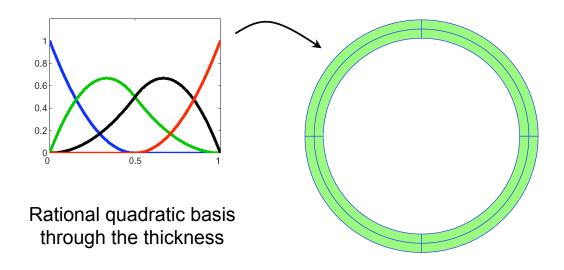


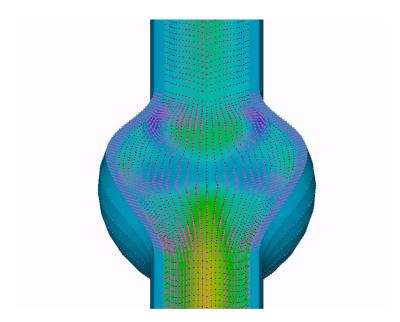
Cross-section Schematic

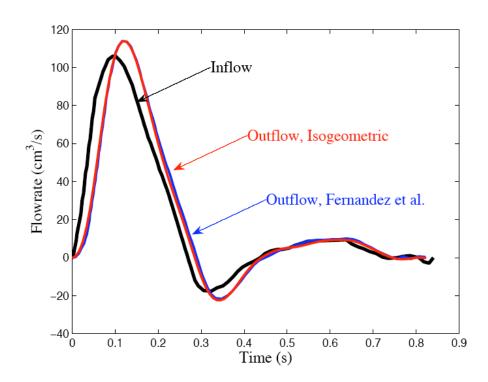


Fluid-solid interface, conforming mesh

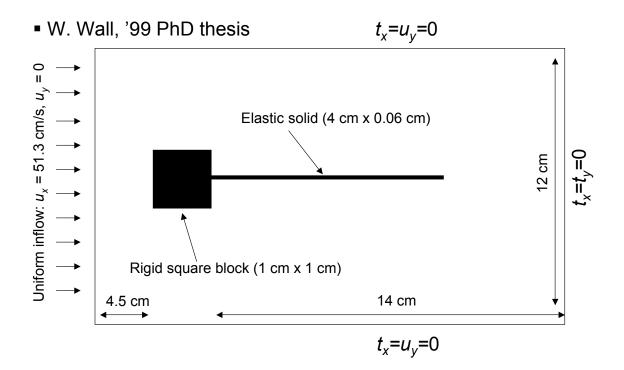
Through-thickness discretization



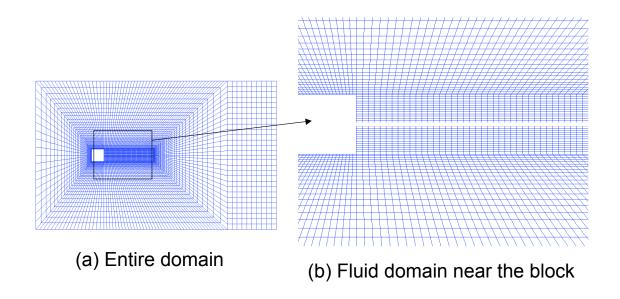


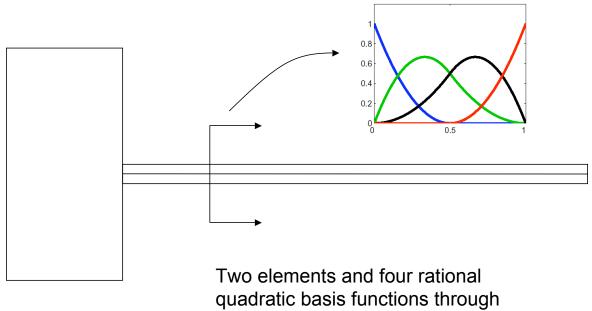


Re = 100 flow over a rigid block with an elastic beam

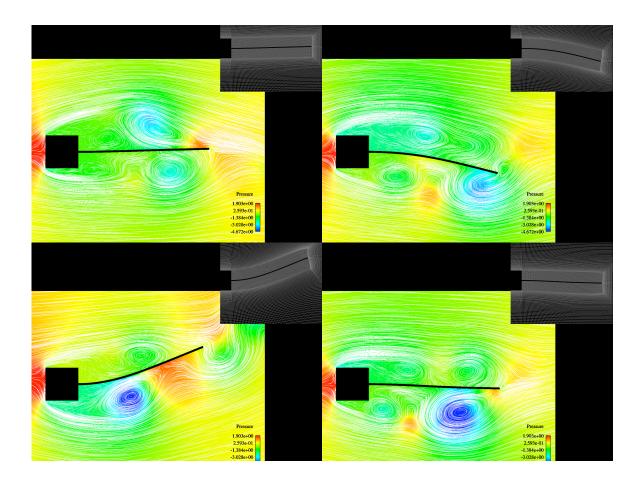


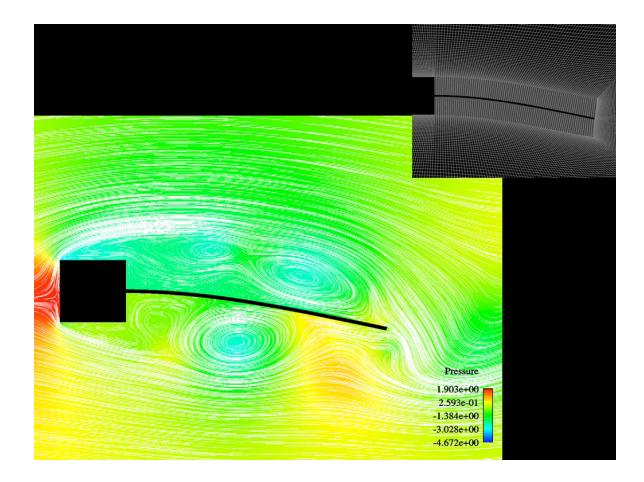
Computational Mesh



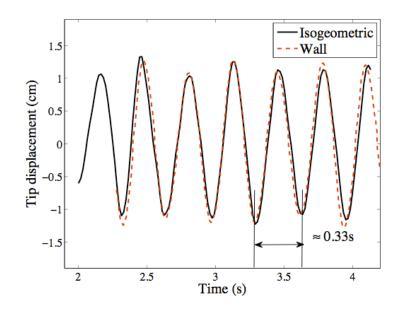


the thickness of the bar

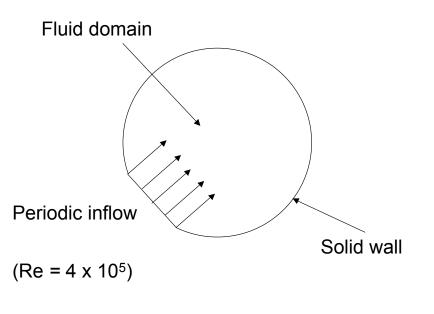




Tip Displacement of Beam



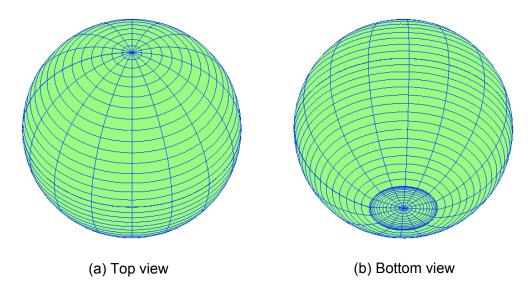
Balloon Containing an Incompressible Fluid



From Wall '06, Tezduyar '07

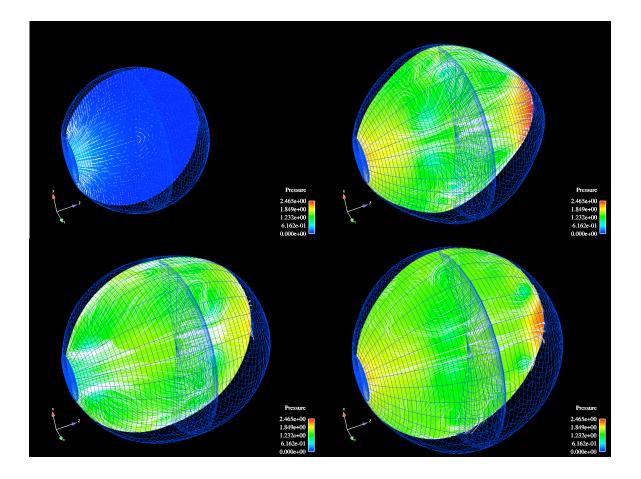
Balloon Containing an Incompressible Fluid

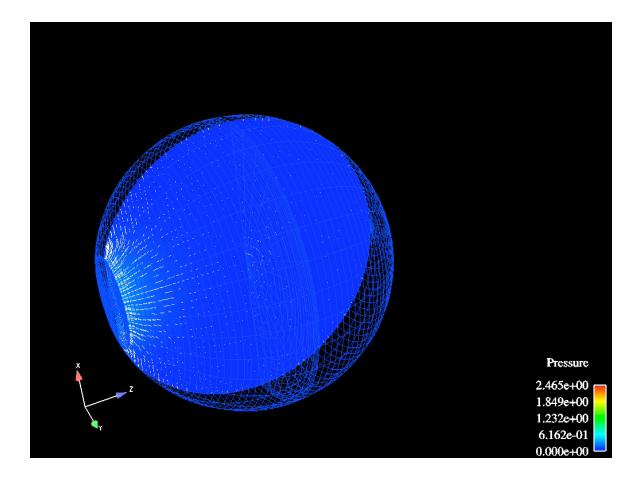
- Quadratic NURBS for both solid and fluid
- Boundary layer meshing



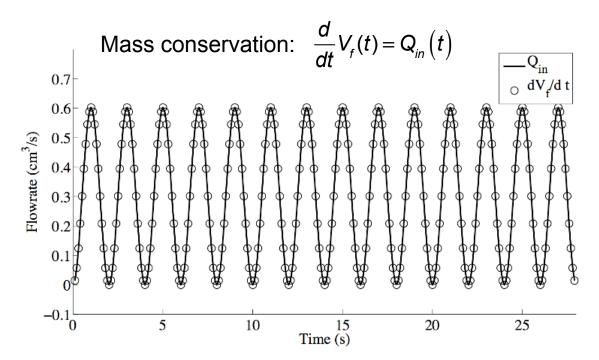
Balloon Containing an Incompressible Fluid

- Staggered algorithms:
 - Fluid domain geometry is defined by motion of the solid, which does not account for fluid *incompressibility*
 - Calculations *fail* unless special procedures are devised
- Strongly coupled, monolithic algorithms work well

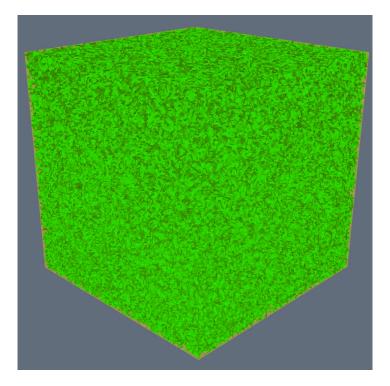




Balloon Containing an Incompressible Fluid



Phase Field Modeling: C¹ Quadratics NURBS

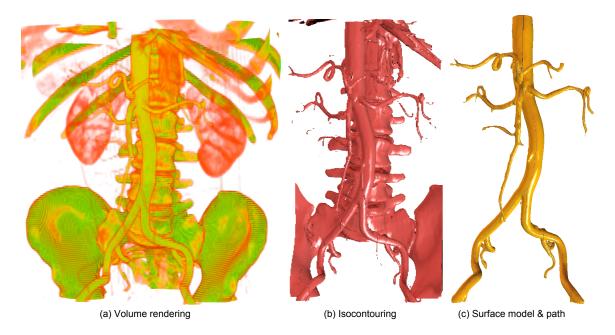


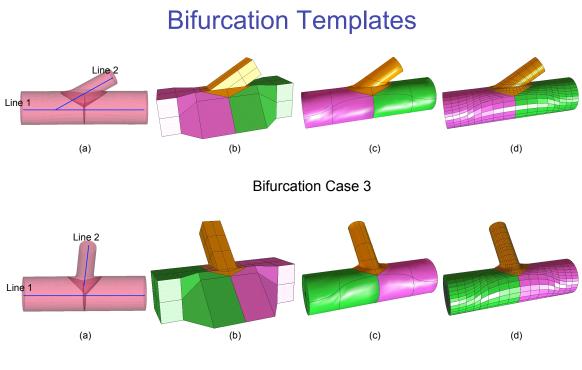
Cardiovascular Research

- Patient-specific mathematical models of major arteries and the heart
- Cardiovascular Modeling Toolkit
 - Abdominal aorta
 - LVADs: Left Ventricular Assist Devices (R. Moser)
 - Aneurysms
 - Vulnerable plaques and drug delivery systems
 - Hearts

Medical Imaging: Computed Tomography (CT)

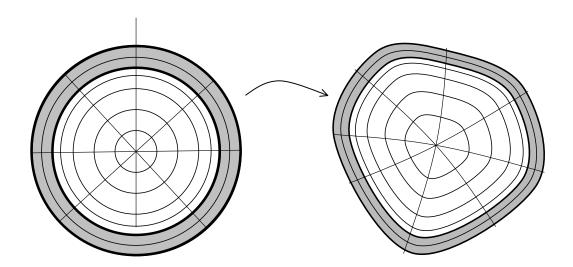
Abdominal Aorta



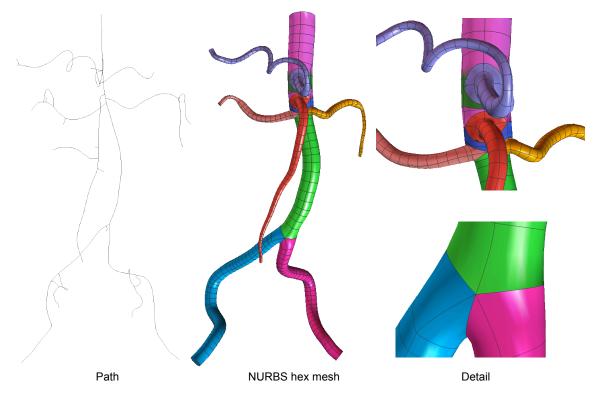


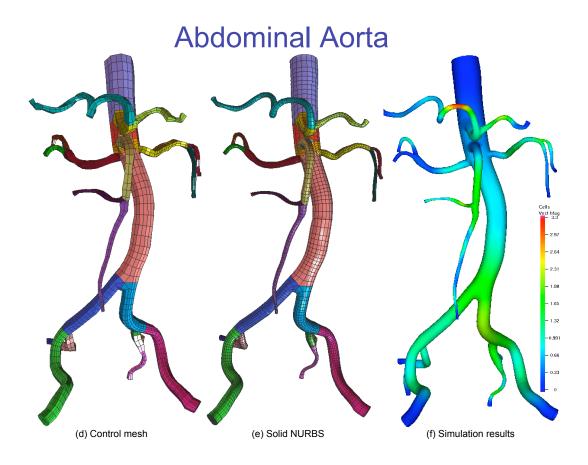
Bifurcation Case 4

Mapping onto a patient-specific arterial cross-section

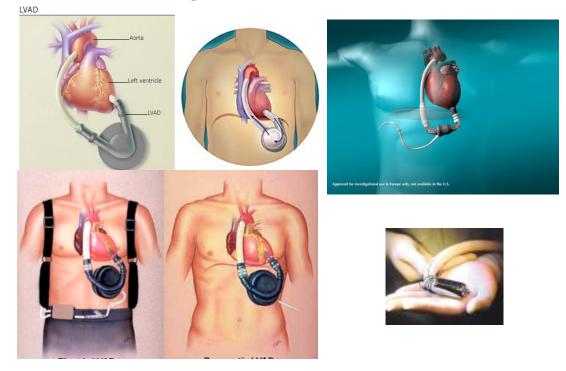


Abdominal Aorta

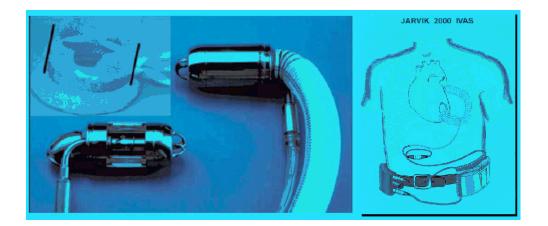




Left Ventricular Assist Devices (LVADs) with Ascending Aortic Distal Anastomosis



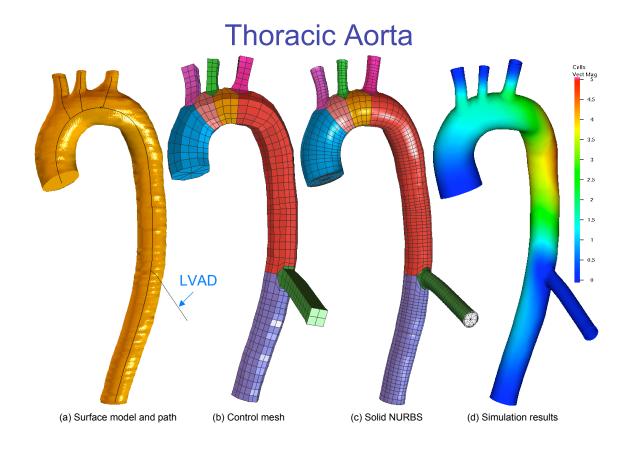
Jarvik 2000 and Schematic of Descending Aortic Distal Anastomosis

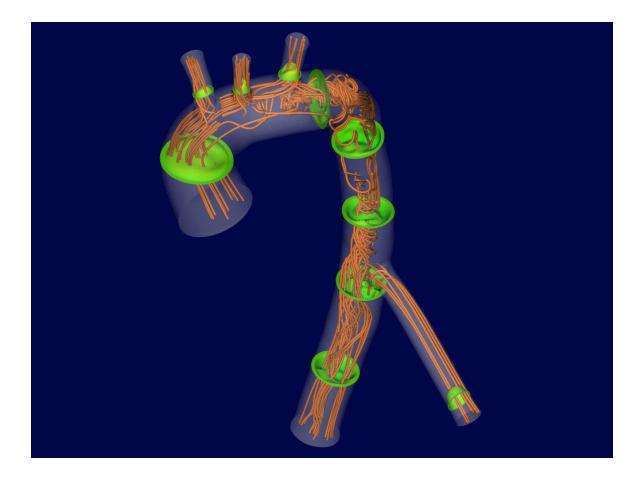


Comparison of Ascending and Descending Aortic Anastamoses

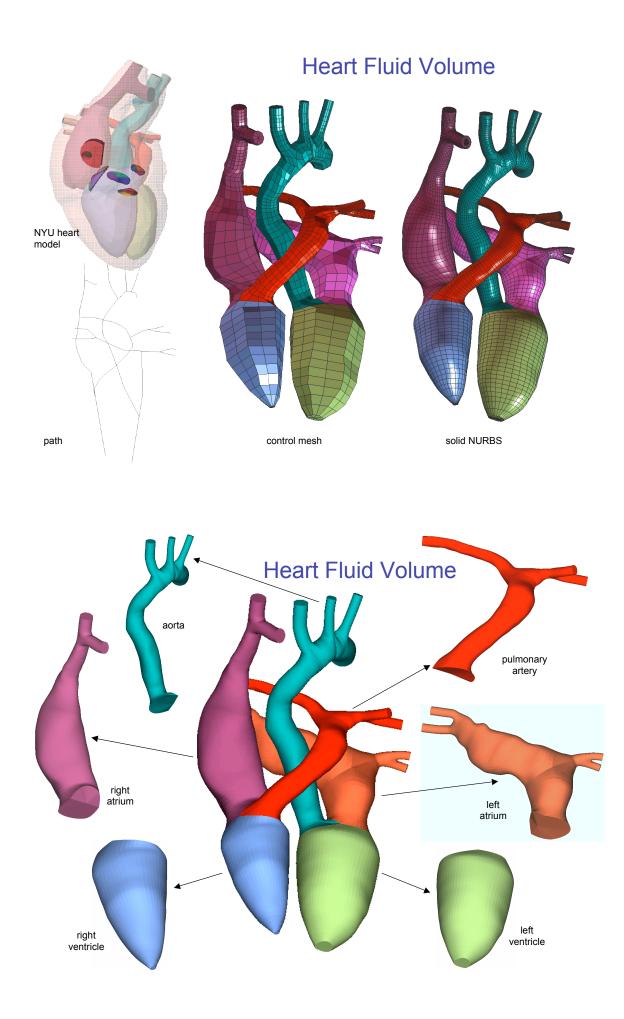
Post-operative complications	Group A: Ascending Aortic Graft	Group B: Descending Aortic Graft
Myocardial infarction:	0/9	4/26
Thrombus in aortic root:	0/9	3/26
Right ventricular failure due to infarction:	0/9	2/26
Accelerated carotid occlusion:	0/9	1/26
Multiple cerebral infarcts:	0/9	1/26

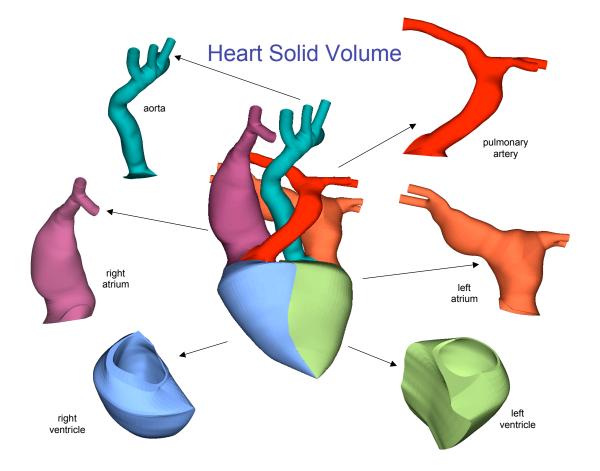
Ref. Texas Heart Institute





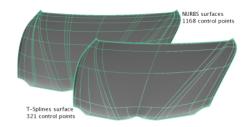
Heart Modeling Toolkit

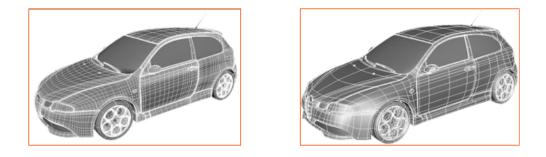




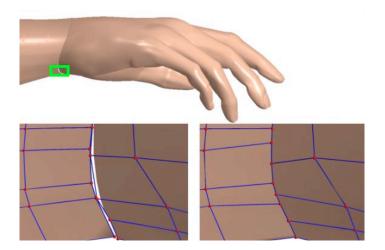
Unstructured NURBS Mesh (T. Sederberg, T-Splines)

Reduced Number of Control Points





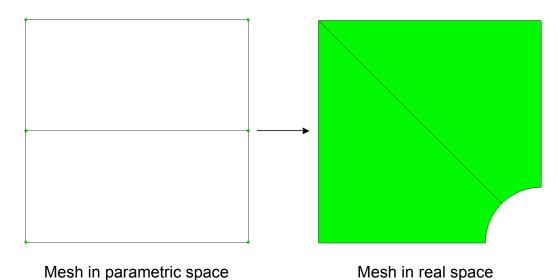
Water tight merging of patches



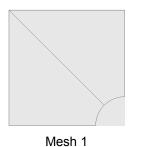
Elastic Plate with a Hole

- Infinite plate with circular hole under constant stress in x-direction
- Uniform and local *h*-refinement for *p* = 2 and 3

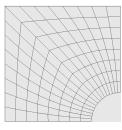
Elastic Plate with a Hole



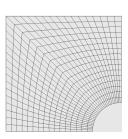
Uniformly Refined T-Meshes (Standard NURBS)



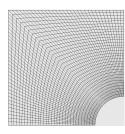
Mesh 3



Mesh 4

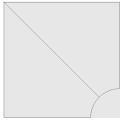


Mesh 5



Mesh 6

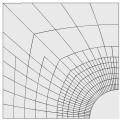
Locally Refined T-Meshes (T-Splines)



Mesh 1

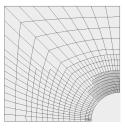
Mesh 4

Mesh 2

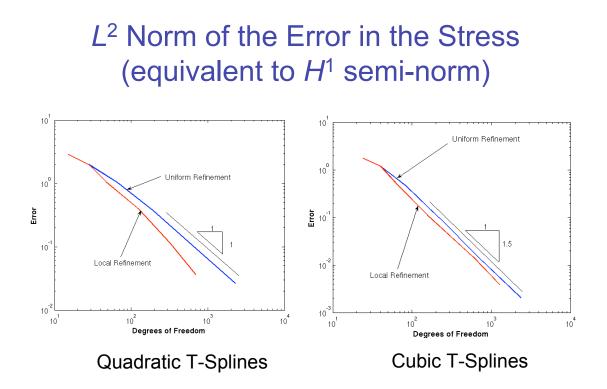


Mesh 5

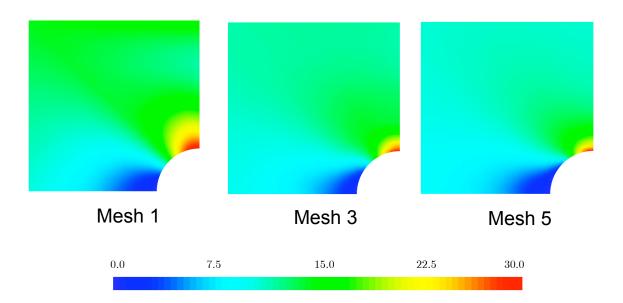
Mesh 3



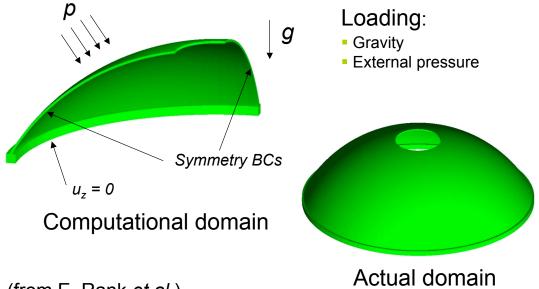
Mesh 6



Contours of σ_{xx} for Locally Refined Meshes

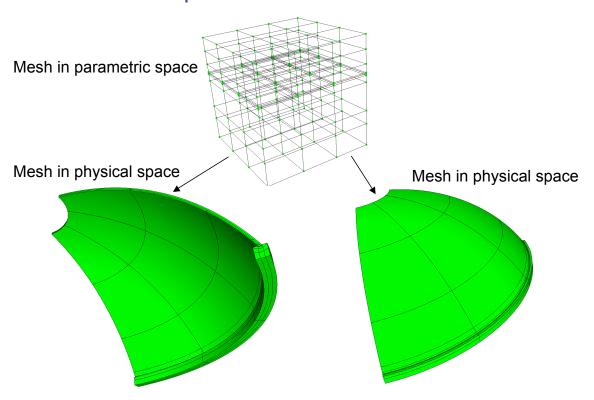


Hemispherical Shell with Stiffener



(from E. Rank et al.)

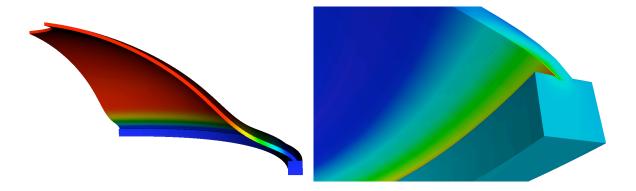
Hemispherical Shell with Stiffener



Locally Refined Meshes

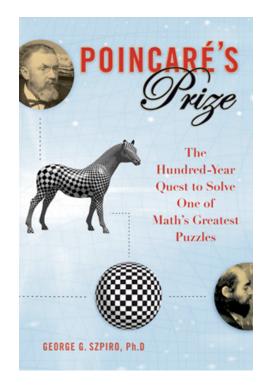


Hemispherical Shell with Stiffener



Vertical displacement (smooth)

Von Mises stress (singular)



Conclusions

- Isogeometric Analysis is a powerful generalization of FEA
 - Mesh refinement is vastly simplified
 - Numerical calculations are encouraging
 - Higher-order accuracy and robustness
 - It may play an important role in *unifying* design and analysis

Papers on Isogeometric Analysis

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, *Computer Methods in Applied Mechanics and Engineering*, Vol. 194, Nos. 39-41, pp. 4135-4195 (2005).

J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes. Isogeometric analysis of structural vibrations, *Computer Methods in Applied Mechanics and Engineering*, Vol. 195, Nos. 41-43, pp. 5257-5296 (2006).

Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli. Isogeometric analysis: approximation, stability and error estimates for *h*-refined meshes, *Mathematical Models and Methods in Applied Science*, Vol. 16, No. 7, pp. 1031-1090, July 2006.

Bazilevs, Y; Calo, VM; Zhang, Y; Hughes, TJR. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. *Computational Mechanics*, 38 (4-5): 310-322 (2006).

 \bigwedge Google "ICES UT Austin" and click on "Research" to find all recent reports.

Geometry is the foundation of analysis

Computational geometry is the future of computational analysis

