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Isogeometric Analysis

• Based on technologies (e.g., NURBS) from computational
geometry used in:

– Design

– Animation

– Graphic art

– Visualization

• Includes standard FEA as a special case, but offers other
possibilities:

– Precise and efficient geometric modeling

– Simplified mesh refinement

– Superior approximation properties

– Integration of design and analysis









NURBS



Isogeometric Analysis
(NURBS, T-Splines, etc.)

FEA

h-, p-refinement

k-refinement



B-Splines

B-spline Basis Functions
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B-spline basis functions

of order 0, 1, 2 for a

uniform knot vector:

    ! = {0,1,2,3,4,…}
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Quadratic (p=2) basis functions for an

open, non-uniform knot vector:

! = {0,0,0,1,2,3,4,4,5,5,5}



- control points - knots

0

1

2

3

4

5

Linear interpolation of control points

yields the control polygon

Quadratic basis

- control points - knots

0

1

2

3

4

5

h-refined Curve

0.5 1.5

2.5

3.5

4.5

Quadratic basis



- control points - knots
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- control points - knots

0

1

2

3

4

5

Cubic p-refined Curve

Cubic basis
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NURBS

Non-Uniform Rational B-splines

 Circle from 3D Piecewise

Quadratic Curves
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Mesh

Control net

Toroidal Surface

Mesh

Control net

h-refined Surface



Mesh

Control net

Further h-refined

Surface

Mesh

Control net

Toroidal Surface



Mesh

Control net

Cubic p-refined

Surface

Mesh

Control net

Quartic p-refined

Surface



Variation Diminishing Property

Lagrange polynomials NURBS

p=7

p=5

p=3

p=7

p=5

p=3

Control points

Nodes

Finite Element Analysis and Isogeometric Analysis

! Compact support

! Partition of unity

! Affine covariance

! Isoparametric concept

! Patch tests satisfied



 Three Quadratic Elements

Knot

insertion

Order

elevation

Order

elevation

Knot

insertion

p-refinement

k-refinement

, ,

 Three Cubic Elements

Knot

insertion

Order

elevation

Order

elevation

Knot

insertion

p-refinement

k-refinement



 Three Quartic Elements

Knot

insertion

Order

elevation

Order

elevation

Knot

insertion

p-refinement

k-refinement

Mathematical Theory of h-refinement



Patch (0,1)2 Physical domain
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Coarsest Discretization

Patch (0,1)2 Physical domain
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First h-refinement



Patch (0,1)2 Physical domain
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Second h-refinement

Approximation with NURBS

Theorem
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Positive constant, depends on p,
 shape of # (but not its size), 

and shape regularity of the mesh.

Factors which render

error estimate

dimensionally consistent.



Error Estimates

• Strongly elliptic problems:

–  Elasticity, structures

• Stabilized/multiscale methods:

– Advection-diffusion

– Incompressible elasticity, Stokes flow

• BB-stable mixed elements:

– Incompressible elasticity, Stokes flow

• Numerical tests confirm and go beyond theoretical results

Isogeometric Structural Analysis

• Isoparametric NURBS elements exactly

represent all rigid body motions and constant

strain states



Hyperboloidal Shell

• Mid-surface:

! x2 + z2 - y2 = 1

! -1 $ y $ 1

• R/t = 103

• Fixed at the top

and bottom

• Loading:

! p = p0 cos 2!

x

z

y

Thickness Discretization

Rational quadratic

basis functions through

the thickness

{

The NURBS surface

defining the mid-surface

is geometrically exact



Surface Discretization

Mesh 3Mesh 2Mesh 1

Deformed Shell
(displacement amplification factor of 10)

View 1

View 2



View 1
(displacement amplification factor of 10)

View 2
(displacement amplification factor of 10)



Radial Displacement at Compression Lobe

(Mesh 3)

Detail of Radial Displacement

at Compression Lobe (Mesh 3)



Isogeometric Vibration Analysis

NASA Aluminum Testbed

Cylinder (ATC)



NASA ATC Frame and Skin

NASA ATC Frame



Main Rib

Coarsest mesh

15° segment of main rib 



Mesh 2

Mesh 3



Longitudinal Stringer

Sample Meshes

1/70 of actual

length

First Torsion Mode



First Bending Mode

First Rayleigh Mode

x-displacement



First Love Mode

x-displacement

ATC Frame and Skin
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 Vibration of a Finite Elastic Rod

with Fixed Ends

Problem:

u,xx +!
2
u = 0 for x "(0,1)

u(0) = u(1) = 0
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Natural frequencies:
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Frequency errors:
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Comparison of FEM (p-refinement) and

NURBS (k-refinement) Frequency Errors
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Comparison of FEM (p-refinement) and

NURBS (k-refinement) Frequency Errors

FEM

NURBS
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Acoustic branch

Optical branch

Comparison of FEM (p-refinement) and

NURBS (k-refinement) Frequency Errors

FEM
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Optical branch
No
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branch



Comparison of FEM (p-refinement) and

NURBS (k-refinement) Frequency Errors
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NURBS
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Wave Propagation in an Infinite Domain

Helmholtz equation:

u,xx + k
2
u = 0 for x !("#,+#)

Wave number:  k

Phase error:  k / kh

!
h
= 2" / k

h

! = 2" / k



Helmholtz Equation Phase Error

p

k

FEM

NURBS

p=1

Duality Principle

• Relationship between wave propagation

in an infinite domain and vibration of a

finite structure

• Frequency errors and phase errors are

related by a change of variables:
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Duality of Frequency and Phase Errors
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Helmholtz Equation Phase Error

p

k

Stopping bands

No stopping bands

Helmholtz equation in 1D,

 Dirichlet boundary conditions

(31 control points for p = 3)



Response spectrum for  p = 3  at  x = L/2

p-method stopping band for p = 3



k = 71; p = 3
(inside the 2nd p-method stopping band)

Fluid-Structure Interaction

• Incompressible viscous fluids (ALE description) and
nonlinear solids (Lagrangian description)

• Residual-based variational multiscale formulation,
applicable to laminar and turbulent flows

• Both fluid and solid may undergo large motions

• Geometry and kinematics are fully compatible across
fluid-structure interfaces

• Strongly coupled, monolithic solution algorithm



Rigid wall

Elastic wall

Rigid wall

 

v = vin (x)Q(t)

vin !n d"
"
# = 1

n $ vin = 0

Pulsatile inflow:

 

p = CR v !n

CR = 300
dyn s

cm5

Resistance BC:

Zero traction

14.79cm 14.79cm4.93cm

Rin=0.85cm
Rin=1.7cm

Rin=0.85cm

Wall thickness = 0.17cm

Mesh



       Cross-section Schematic

Solid 
Fluid 

Fluid-solid interface, conforming mesh

Through-thickness discretization

Rational quadratic basis

through the thickness





Rigid square block (1 cm x 1 cm)

Elastic solid (4 cm x 0.06 cm)
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Computational Mesh

(a) Entire domain
(b) Fluid domain near the block



Two elements and four rational

quadratic basis functions through

the thickness of the bar



Movie goes here

Tip Displacement of Beam



Periodic inflow

Fluid domain

Solid wall

From Wall ’06, Tezduyar ’07

  Balloon Containing an Incompressible Fluid

(Re = 4 x 105)

(a) Top view (b) Bottom view

Balloon Containing an Incompressible Fluid

! Quadratic NURBS for both solid and fluid

! Boundary layer meshing



 Balloon Containing an Incompressible Fluid

! Staggered algorithms:

! Fluid domain geometry is defined by
motion of the solid, which does not account
for fluid incompressibility

! Calculations fail unless special procedures
are devised

! Strongly coupled, monolithic algorithms work
well



Movie goes here

Balloon Containing an Incompressible Fluid
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Phase Field Modeling:  C1 Quadratics NURBS

Cardiovascular Research

• Patient-specific mathematical models of major arteries
and the heart

• Cardiovascular Modeling Toolkit

– Abdominal aorta

– LVADs: Left Ventricular Assist Devices (R. Moser)

– Aneurysms 

– Vulnerable plaques and drug delivery systems

– Hearts



  Medical Imaging:  Computed Tomography (CT)

(a) Volume rendering (b) Isocontouring (c) Surface model & path

Abdominal Aorta



(a) (b) (c) (d)

Line 2

Line 1

(a) (b) (c) (d)

Line 2

Line 1

Bifurcation Case 4

Bifurcation Case 3

Bifurcation Templates

    Mapping onto a patient-specific arterial cross-section



Abdominal Aorta

Path NURBS hex mesh Detail

(d) Control mesh (f) Simulation results(e) Solid NURBS

Abdominal Aorta



Left Ventricular Assist Devices (LVADs) with

Ascending Aortic Distal Anastomosis

Jarvik 2000 and Schematic of

Descending Aortic Distal Anastomosis

.



Comparison of Ascending and

Descending  Aortic Anastamoses

4/26

3/26
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1/26

0/9

0/9

0/9

0/9

0/9

Myocardial infarction:

Thrombus in aortic root:

Right ventricular failure due to infarction:

Accelerated carotid occlusion:

                              Multiple cerebral infarcts:

Group B:

Descending

Aortic Graft

Group A:

Ascending

Aortic Graft

 Post-operative complications

 

Ref.  Texas Heart Institute

(a) Surface model and path (b) Control mesh (d) Simulation results(c) Solid NURBS

LVAD

Thoracic Aorta



Heart Modeling Toolkit



path

NYU heart

model

control mesh solid NURBS

Heart Fluid Volume

right

ventricle

left
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left

atrium

right
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pulmonary

artery

aorta

Heart Fluid Volume



Heart Solid Volume

right

ventricle

left

ventricle
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right
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pulmonary

artery

aorta

          Unstructured NURBS Mesh (T. Sederberg, T-Splines)



Reduced Number of Control Points

Water tight merging of patches



Elastic Plate with a Hole

! Infinite plate with circular hole

under constant stress in x-direction

! Uniform and local h-refinement for

p = 2 and 3

Elastic Plate with a Hole

Mesh in parametric space Mesh in real space



Mesh 1 Mesh 2 Mesh 3

Mesh 4 Mesh 5 Mesh 6

Uniformly Refined T-Meshes

(Standard NURBS)

Mesh 1 Mesh 2 Mesh 3

Mesh 4 Mesh 5 Mesh 6

Locally Refined T-Meshes
(T-Splines)



L2 Norm of the Error in the Stress

(equivalent to H1 semi-norm)

Quadratic T-Splines Cubic T-Splines

Mesh 5Mesh 1 Mesh 3

Contours of %xx for Locally Refined Meshes

0.0                             7.5                                 15.0                             22.5                        30.0



Hemispherical Shell with Stiffener

Computational domain

Actual domain
(from E. Rank et al.)

Loading:

! Gravity

! External pressure

p
g

Symmetry BCs

uz = 0

Hemispherical Shell with Stiffener

Mesh in parametric space

Mesh in physical space Mesh in physical space



 Locally Refined Meshes

Hemispherical Shell with Stiffener

Vertical displacement (smooth) Von Mises stress (singular)



Conclusions

• Isogeometric Analysis is a powerful

generalization of FEA

– Mesh refinement is vastly simplified

– Numerical calculations are encouraging

– Higher-order accuracy and robustness

– It may play an important role in unifying

design and analysis
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      Google “ICES UT Austin” and click on “Research” to find all recent reports.

Geometry is the foundation of analysis

Computational geometry is the future of computational analysis




