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The syntactic semigroup

Let L be a language of A+. The syntactic semigroup of L is the quotient of A+ by
the congruence

u ≡L v ⇔ C(u) = C(v)

where
C(w) = {(z , t) ∈ A∗ ∣ zwt ∈ L}.

A+/ ≡L∶

Alfredo Costa (CMUC) A categorical invariant of flow equivalence PIMS, June 4th, 2013 2 / 21



The syntactic semigroup

Let X be a subshift of AZ. If X is strictly contained in AZ, then the syntactic
semigroup of L(X ), as a subset of A+, is a semigroup with a zero.

The elements of A+ ∖ L form a class, which is the zero element

To avoid treating AZ differently, we add a zero to the syntactic semigroup
of L(AZ).

Notation for the syntactic semigroup (with zero): S(X ).
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The syntactic semigroup

The transition semigroup of the Fischer cover of an irreducible sofic shift X is
isomorphic to S(X ).

Example
Even shift
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The syntactic semigroup

The transition semigroup of the Krieger cover of a sofic shift X is isomorphic to
S(X ).

Example
Even shift
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The Karoubi envelope

Let S be a semigroup. The Karoubi envelope of S is a category K(S) defined by:

the objects are the idempotents e = e2 of S ;

the arrows f Ð→ e are the triples (e, s, f ) of elements of S such that s = esf ;

the composition of arrows is given by

(e, s, f )(f , t,g) = (e, st,g).
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Note that the it suffices to work with LU(S) = {s ∈ S ∣ s = esf , e = e2, f = f 2}:

K(S) = K(LU(S))
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Some remarks

The Karoubi envelope of S(X ) is the Karoubi envelope of
S(X ) ∖ {[2,3,_]}.

The Karoubi envelope of an irreducible finite shift is equivalent to the
Karoubi envelope of {0,1}.

The Karoubi envelope of the minimal shift is the trivial monoid.
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Invariance of the Karoubi envelope

Denote by K(X ) the Karoubi envelope of S(X ).

Theorem (Steinberg & AC)
If X and Y are flow equivalent, then K(X ) and K(Y ) are equivalent.
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A “monoidal” example

Corollary
If X and Y are flow equivalent shifts such that S(X ) and S(Y ) are monoids,
then S(X ) and S(Y ) are isomorphic.
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A “monoidal” example

1 2
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*[ _, _, _, _ ]

*[ 1, _, _, _ ] [ 2, _, _, _ ] [ 3, _, _, _ ] [ 4, _, _, _ ]

[ _, 1, _, _ ] *[ _, 2, _, _ ] [ _, 3, _, _ ] [ _, 4, _, _ ]

[ _, _, 1, _ ] [ _, _, 2, _ ] *[ _, _, 3, _ ] [ _, _, 4, _ ]

[ _, _, _, 1 ] [ _, _, _, 2 ] [ _, _, _, 3 ] *[ _, _, _, 4 ]

[ 1, 4, _, _ ] [ 2, 3, _, _ ]

[ 4, 1, _, _ ] [ 3, 2, _, _ ]

*[ 1, 2, 3, 4 ]

[ 2, 1, 4, 3 ]

*[ _, _, _, _ ]

*[ 1, _, _, _ ] [ 2, _, _, _ ] [ 3, _, _, _ ] [ 4, _, _, _ ]

[ _, 1, _, _ ] *[ _, 2, _, _ ] [ _, 3, _, _ ] [ _, 4, _, _ ]

[ _, _, 1, _ ] [ _, _, 2, _ ] *[ _, _, 3, _ ] [ _, _, 4, _ ]

[ _, _, _, 1 ] [ _, _, _, 2 ] [ _, _, _, 3 ] *[ _, _, _, 4 ]

[ 3, _, _, 4 ] [ 4, _, _, 3 ]

[ _, 3, 4, _ ] [ _, 4, 3, _ ]

*[ 1, 2, 3, 4 ]

[ 2, 1, 4, 3 ]
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Action of K(X )

Extend the Krieger cover to a complete automaton by adding a sink state ∅.
Let Q be the set of vertices of the extended automaton.
An arrow (e, s, f ) of K(X ) defines the mapping

AX (e, s, f )∶ Q ⋅ e → Q ⋅ f
q ↦ q ⋅ s

qe q · s f

s

1

The correspondence (e, s, f )↦ AX (e, s, f ) is a functor.
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Invariance of the action

Theorem
If X and Y are flow equivalent shifts, then the actions AX and AY are
equivalent.

That is, there is an equivalence functor F ∶K(X )→ K(Y ) and a natural
isomorphism η∶AX → AY ○ F such that...

Q(X )e
ηe //

AX (e,s,f )
��

Q(Y )F (e)

AY (F(e,s,f ))
��

Q(X )f
ηf // Q(Y )F (f ).
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The proper comunication graph

The proper communication graph of a (directed) graph G is defined as follows:

1 take the set PC(G) of nontrivial (i.e. having at least one edge) strongly
connected components of G ,

2 for C1,C2 ∈ PC(G), make C1 ≤ C2 if there is a path from a vertex of C1 to a
vertex of C2,

3 the proper communication graph of G is the acyclic graph induced by the
poset (PC(G),≤).

1
##

��

2cc // 3 // 4
zz

5
##
6cc

##
7cc

{1,2} //

��

{4}

{5,6,7}

Theorem (Bates, Eilers & Pask, 2011)
The proper communication graph of the Krieger cover of a sofic shift is a flow
equivalence invariant.
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The proper comunication graph

qe r f

(e, s, f)

ηe(q)F (e) ηf (r) F (f)

F (e, s, f)

1

Let LU(X ) = {s ∈ S(X ) ∣ s = esf , for some idempotents e, f ∈ S(X )}.

Let q, r be vertices stabilized by some idempotent.

Then q ⪯ r if and only if rLU(X ) ⊆ qLU(X ).

Generalization
The poset

{qLU(X ) ∣ q is stabilized by some idempotent}

is invariant under flow equivalence.
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The action: an example
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The action on the Fischer cover

Theorem
If X and Y are flow equivalent synchronizing shifts, then K(X ) and K(Y ) have
equivalent actions over the corresponding Fischer covers.

Figure: Fischer covers of two synchronizing shifts.

In the first shift, the rank of every block of the shift is one or infinite.
In the second shift, the word ac acts as an idempotent of rank two.
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An invariant hailing from Green’s relations

Legend for the label (i ,G , r) of a D-class D:
i = 1 if D is regular, i = 0 otherwise;
G is the (isomorphism class) of the Schützenberger group of D;
r is the rank of the action of the elements of the D-class on the Fischer cover.

An analogous result holds replacing the Fischer cover by the Krieger cover, which
is valid for all shifts (not necessarily sofic).
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An invariant hailing from Green’s relations

a2|(1, C2, 3) a1|(1, C2, 5)

a3|(1, C6, 6)a4|(0, C2, 3)

a5|(1, C1, 1)

a1a2|(1, C1, 0)

a2|(1, C2, 3) a3|(1, C6, 6)

a1|(1, C2, 5)a4|(0, C2, 3)

a5|(1, C1, 1)

a1a2|(1, C1, 0)
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The poset of subsynchronizing subshifts of a sofic shift

N. Jonoska constructed a conjugacy invariant for a reducible shift X , the poset of
subsynchronizing subshifts of X .

These subshifts are the unions of subshifts whose finite blocks are factors of right
contexts of a magic word for L(X )
(a word m is magic if m is synchronizing and mA∗m ∩ L(X ) ≠ ∅).

Using our main result, we showed that this poset is a flow invariant.
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Classification of Markov-Dyck shifts

Let G be a finite (directed graph). Let G ′ be the graph obtained from G by
adjoining to each edge x ∶ u → v an inverse edge x−1 ∶ v → u, establishing a
bijection x ∈ E(G)↦ x−1 ∈ E(G)−1.

Presentation of the graph inverse semigroup PG

1 PG is generated by E(G) ∪ E(G)−1 ∪ {0} ∪ {1v ∣ v ∈ V (G)}.
2 the generators are subject to the relations

(a) 1v are local identities
(b) xx−1 = 1αx , x ∈ E(G)
(c) xy−1 = 0 if y ≠ x , x , y ∈ E(G)

PG is an inverse semigroup.
The words, over the alphabet E(G) ∪ E(G)−1, whose image in PG is not 0,
define a shift, the Markov-Dyck shift DG .
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Classification of Markov-Dyck shifts

If the out-degree of a vertex is always at least one, then the semigroup with zero
PG is generated by E(G) ∪ E(G)−1.

Lemma
Suppose each vertex of G has out-degree at least one.
Then PG is the syntactic semigroup of DG if and only if G has no vertex of
in-degree exactly one.

Theorem

Let G and H with out-degree always at least one and in-degree never one.

DG is flow equivalent to DH ⇔ G ≅ H.

Proof.
DG flow equivalent to DH ⇒ K(PG) equivalent to K(PH)
K(PG) equivalent to K(PH) ⇒ G ≅ H
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