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Introduction and Motivation

Introduction

The function ζ(s) is a very important function in mathematics. Let s be a
complex number with σ and t respectively it’s real and imaginary parts.

Definition (ζ(s))

ζ(s) =
∞∑
n=1

1

ns

for σ > 1, and for the remainder of the complex plane, it is defined as the
analytic continuation of the above function.
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Introduction and Motivation

Introduction

The study of zeros of the zeta function plays an important role in
analytical number theory.

Riemann Hypothesis(RH) is about the locations
of zeros of Riemann zeta function. According to this hypothesis ζ(s) has
trivial zeros at negative even integers, that is s = −2,−4,−6, ..., and no
other real zeros and non-real zeros, also called the nontrivial zeros, are lie
on the critical line R(s) = 1

2 , and to date still is an open problem.
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Introduction and Motivation

Motivation

The zeros of the zeta function are intimately connected to the distribution
of prime numbers, for example, an explicit formula and study of the zeros
of zeta function lead to the estimate

π(x) = Li(x) + O

(
x

exp(c
√
log x)

)
For some c > 0 , where π(x) is the number of primes less than or equal to
x and Li(x) is the logarithmic integral function defined by
Li(x) =

∫ x
2

1
log t dt. The shape and constant in the error term are

determined by what we can prove about the number and location of zeros
of zeta function.
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Introduction and Motivation

Zero density

Definition

Let 1
2 < σ < 1, T > 0, we have

N(σ,T ) = #{ρ = β + iγ : ζ(ρ) = 0, 0 < γ < T , σ < β < 1}. (1)

We want to find an explicit upper bound for the number of zeros of the
zeta function within this rectangular region. This type of result is
commonly referred to as a zero density result.
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History
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History

History

There have been several authors who have worked on this topic.

In 1913
Bohr and Landau[1] proved that

N(σ,T ) = O

(
T

σ − 1/2

)
As T grows to infinity. In 1937 Ingham[2] showed that

N(σ,T ) = O
(
T (2+4c)(1−σ)(logT )5

)
.

By assuming that ζ(12 + it) = O(tc+ϵ).
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History

History

Ramaré[3] had proven an explicit version of Ingham’s bound. For example,
for σ = 0.90 this formula simplifies to

N(0.90,T ) < 1293.48(logT )
16
5 T

4
15 + 51.50(logT )2.

Kadiri, Lumley, and Ng[4] have presented a result that provides a tighter
bound for N(σ,T ). Their result improves Ramare’s estimate by following
Ingham’s argument but using a more general weight. Specifically, their
bound often take the shape:

N(σ,T ) ≤ C1(σ)(logT )5−2σT
8
3
(1−σ) + C2(σ)(logT )2.

If we put σ = 0.90, We can see how this improves on Ramare’s estimate.

N(0.90,T ) < 11.499(logT )
16
5 T

4
15 + 3.186(logT )2.
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History

Main goal of my thesis

Goal:

Find better values of C1(σ) and C2(σ).

Update the result to use better bounds on ζ on the half line which
will improve the exponents on both the T and logT terms.

Improve the bounds for some arithmetic sums which effects on the
C2(σ) term.
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General Methods Counting of zeros

Counting zeros of a function in a rectangle region

There exists many useful tools in complex analysis to count the zeros of
the holomorphic function inside a specified rectangle region and, in my
thesis, by using the classic idea of Bohr, Landau, Littlewood and
Titchmarsh as stated in [5] which uses the residue theorem, we can bound
the number of zeros of a function in a rectangle region. Specifically, we
will try to bound the number of zeros of a function h as in:

Nh(σ,T1,T2) = #
{
ρ′ = β′ + iγ′; h

(
ρ′
)
= 0, σ < β′ < 1,T1 < γ′ < T2

}
.

(2)
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General Methods Counting of zeros

Counting zeros of a function in a rectangle region

First, we compare the number of zeros for our function to its average:

Nh(σ,T1,T2) ≤
1

σ − σ′

∫ µ

σ′
(Nh(τ,T1,T2))dτ. (3)

Using the residue theorem in complex analysis, we have

−1

2πi

∫
R
log h(s)ds =

∫ µ

σ′
N(τ,T1,T2)dτ. (4)

where R is the boundary of the region. Therefore, we have

Nh(σ,T1,T2) ≤
1

2π(σ − σ′)
ℜ
∫
R
log h(s)ds. (5)
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General Methods Counting of zeros

Counting zeros of a function in a rectangle region

Theorem (E. Titchmarsh, 2011)

Let h(s) is a meromorphic function in and upon the boundary of a
rectangle bounded by the lines t = T1, t = T2, σ = σ′ and σ = µ.
(µ > σ′) and suppose that N(σ,T1,T2) is the number of zeros of the
function h(s). Then for counting zeros of the function in that specified
rectangle region, we use the below inequality,

Nh(σ,T1,T2) ≤
1

2π (σ − σ′)

(∫ T2

T1

log |h
(
σ′ + it

)
|dt +

∫ µ

σ′
arg h(τ + iT )dτ

−
∫ µ

σ′
arg h(τ + iH)dτ −

∫ T2

T1

log |h(µ+ it)|dt

)
.

(6)
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General Methods Counting of zeros

Goal of the Analysis

Goal: To find an upper bound for each integral in the expression for
Nh(σ,T1,T2).

Key Insight:

We note that in the application to ζ(s), as T2 grows larger, the main

contribution comes from the first integral,
∫ T2

T1
log |h (σ′ + it) |dt.
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Challenges and Approach

Challenges in Bounding the first integral,∫ T2

T1
log |h (σ′ + it) |dt

While estimating the integral of log h(σ′ + it) two key challenges arise:

logarithmic functions are not analytic.

We don’t have good understanding of zeta function in the critical
strip.

Golnoush Farzanfard (U of L) Explicit zero density for the Riemann zeta function 18 / 49



Challenges and Approach

Challenges in Bounding the first integral,∫ T2

T1
log |h (σ′ + it) |dt

While estimating the integral of log h(σ′ + it) two key challenges arise:

logarithmic functions are not analytic.

We don’t have good understanding of zeta function in the critical
strip.

Golnoush Farzanfard (U of L) Explicit zero density for the Riemann zeta function 18 / 49



Challenges and Approach

Our Solutions to Overcome the Challenges

To address these challenges, our first solution is:

Instead of finding an upper bound for integral of log h(σ′ + it), we
can find an upper bound for the integral of h(σ′ + it), since we have
the following inequality:

1

T2 − T1

∫ T2

T1

log(|h(σ′+ it)|)dt ≤ log

(
1

T2 − T1

∫ T2

T1

|h(σ′+ it)|dt
)
.

(7)
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Challenges and Approach

Our Solutions to Overcome the Challenges

Second solution is applying the convexity estimate:

It basically says that the integral of the form
J(σ′) =

∫∞
−∞ |h(σ′ + it)|dt is log -convex, so that the value in the

middle is controlled by the integral on the sides, where h is an
analytic complex function.

J(σ) ≤ (J(σ1))
σ2−σ

σ2−σ1 · (J(σ2))
σ−σ1
σ2−σ1

For instance in our context, we have good information about zeta
function outside of the critical strip, and, reasonable information at 1

2
line. Therefore, we use the convexity bound for integrals to move the
problem to each of the two boundaries.
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Challenges and Approach

But what is the problem of this
method?
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Challenges and Approach

Problem

Since our goal is to find an upper bound for the integral of the form∫ T2

T1

|h(σ′ + it)|dt,

convexity estimate creates another problem that the integral is of the from∫ ∞

−∞
|h(σ′ + it)|dt.
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Challenges and Approach

Solution

Therefore, our solution is for using the convexity estimate we first use the
smoothing method to smooth the function at σ′ and then for getting
bounds at the boundaries we use unsmoothing method to turn problem
back to the original integrals at each of the boundaries.
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Challenges and Approach

Smoothing method

The general idea of this method is to replace a bounded sum or integral of
a function with an infinite sum or integral of a smoothed version of the
function. To obtain this, we introduce a smooth weight function g as a
characteristic function.

Definition

Let α > 0. We have

g(s) =
s − 1

s
eα(

s
T
)2 .
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Challenges and Approach

Smoothing method

We multiple g to our function h which becomes more easy to analyze the
integral of the smoothed function rather than the original one.

Therefore, we have∫ T2

T1

|h(σ + it)|dt ≤
∫∞
−∞ |g(σ + it)||h(σ + it)|dt

ω2
,

where ω2 is a positive number depend on g .We denote

J(σ) =

∫ ∞

−∞
|g(σ + it)||h(σ + it)|dt. (8)
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Challenges and Approach

Unsmoothing method

Unsmoothing method seems to involve reversing or inverting the process
of smoothing. So by unsmoothing method we obtain the below bound

J(σ) ≤ ω1

∫ ∞

0
xβ−1e−2αxβF (σ, xT )dx

Where ω1 is a positive function depend on g and

F (σ, xT ) =

∫ t

0
|h(σ + it)|dt

Therefore, by using unsmoothing method we can find an upper bound for
J(σ1) and J(σ2).
To obtain these two bounds, we need to find a bound for F (σ, xT ) at σ1
and σ2.
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Challenges and Approach

Main Theorem

Theorem (G.Farzanfard)

Suppose that there exist a, ai , b, bi , d , di depending on σ1 and
a′, a′i , b

′, b′i , d
′, d ′

i depending on σ2 such that, for all t we have

F (σ1, t) ≤ dta(log t)b
∑
i

di t
ai (log t)bi

F (σ2, t) ≤ d ′ta
′
(log t)b

′∑
i ′

d ′
i t

a′i (log t)b
′
i ,

(9)

where
∑

i di t
ai (log t)bi = 1+ o(1) and

∑
i ′ d

′
i t

a′i (log t)b
′
i = 1+ o(1). Then

F (σ,T1,T2) ≤ C5T
a(

σ2−σ

σ2−σ1
)+a′(

σ−σ1
σ2−σ1

)

2 logT
b(

σ2−σ

σ2−σ1
)+b′(

σ−σ1
σ2−σ1

)

2 , (10)

where C5 = C5(σ,T1,T2, ai , a
′
i , bi , b

′
i , di , d

′
i ) is decreasing as T2 → ∞.

Golnoush Farzanfard (U of L) Explicit zero density for the Riemann zeta function 27 / 49



Challenges and Approach

Main Theorem

Theorem (G.Farzanfard)

Suppose that there exist a, ai , b, bi , d , di depending on σ1 and
a′, a′i , b

′, b′i , d
′, d ′

i depending on σ2 such that, for all t we have

F (σ1, t) ≤ dta(log t)b
∑
i

di t
ai (log t)bi

F (σ2, t) ≤ d ′ta
′
(log t)b

′∑
i ′

d ′
i t

a′i (log t)b
′
i ,

(9)

where
∑

i di t
ai (log t)bi = 1+ o(1) and

∑
i ′ d

′
i t

a′i (log t)b
′
i = 1+ o(1). Then

F (σ,T1,T2) ≤ C5T
a(

σ2−σ

σ2−σ1
)+a′(

σ−σ1
σ2−σ1

)

2 logT
b(

σ2−σ

σ2−σ1
)+b′(

σ−σ1
σ2−σ1

)

2 , (10)

where C5 = C5(σ,T1,T2, ai , a
′
i , bi , b

′
i , di , d

′
i ) is decreasing as T2 → ∞.

Golnoush Farzanfard (U of L) Explicit zero density for the Riemann zeta function 27 / 49



Challenges and Approach

Challenges in Bounding the fourth integral,

−
∫ T2

T1
log |h (µ+ it) |dt

For finding an upper bound for the integral, −
∫ T2

T1
log |h (µ+ it) |dt, we

need to find an explicit lower bound for
∫ T2

T1
log |h (µ+ it) |dt. In our

context, we have the following challenge:

Finding the lower bound on the integral of the zeta function outside
of the critical strip is challenging.
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Challenges and Approach

Our Solutions to Overcome the Challenges

To address this challenge, we use mollifiers.

Definition of Mollifier

Let X ≥ 1 be a parameter. We define the mollifier as follows:

MX (s) =
∑
n≤X

µ(n)

ns
, (11)

where µ(n) is the Möbius function.
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Challenges and Approach

Our Solutions to Overcome the Challenges

Therefore, rather than counting number of zeros of the zeta function, we
will count the number of zeros of a function h, which is defined by:

h = 1− (ζ(s)MX(s)− 1)2.

Let f (s) = ζ(s) ·MX (s)− 1. The series expansion for f (s) is expressed as
a below dirichlet series

f (s) =
∑
n≥1

λ(n)

ns
,

with

{
λx(n) = 0 if n ≤ x
λx(n) =

∑
d|n
d≤x

µ(d) if n > x .
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Challenges and Approach

Advantage of the function h

Remark

The function hX (s) has an advantage: outside the critical strip, it is close
to 1, making it easier to estimate accurately. Furthermore, compared to
the product MX (s)ζ(s), new function hX (s) involves second moments in
certain estimates, which allows us to use the mean value theorem.
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Application

Application
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Application

Application: First integral

Now, to apply the general methods in our Main Theorem, we need to
bound:

F
(
1
2 ,T

)
=
∫ T
0 |f (12 + iT )|2dt,

F
(
1 + δ

logX ,T
)
=
∫ T
0 |f (1 + δ

logX + iT )|2dt.

Remark

In order to bound the first integral, we will introduce the specific bounds
required for F (σ,T ) to proceed with the application of the Main Theorem.
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Application

Bounding F (12 ,T )

To bound F (12 ,T ), we first need to bound∫ T

0
|ζ(1

2
+ it)2MX (

1

2
+ it)2|dt. (12)

This integral is bounded by

max |ζ(1
2
+ it)|2

∫ T

0
|MX (

1

2
+ it)|2dt. (13)

Therefore, for estimates on the half line, we have the below key inputs:

Bounds for ζ(s)2 on the critical line.

bound for the integral,
∫ T
0

∣∣MX (
1
2 + it)

∣∣2 dt.
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Application

Bounding |ζ(12 + it)|2

Kadiri, Lumely and Ng used the below bound,

max
|t|≤T

|ζ(1
2
+ it)|2 ≤ (0.63T

1
6 logT + 2.851)2, T > 0

To improve the final bound, we will substitute improved bounds for ζ(s).
Hiary, Patel and Yang [6] improved the lead constant for T > 3, we use
this to prove:

max
|t|≤T

|ζ(1
2
+ it)|2 ≤ (0.618)2T

1
3 log2 T + ζ(

1

2
)2, T > 0

Patel and Yang [7], removed the log term and so we obtain:

max
|t|≤T

|ζ(1
2
+ it)|2 ≤ (66.7)2t

27
82 + ζ(

1

2
)2, T > 0
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Application

bounding
∫ T

0

∣∣MX (
1
2 + it)

∣∣2 dt
We use Montgomery and Vaughan’s mean value theorem for the sums
involving real-valued sequences:

∫ T

0

∣∣∣∣∣
∞∑
n=1

unn
it

∣∣∣∣∣
2

dt ≤
∑
n≥1

|un|2 (T + πm0(n + 1)) .

For a real-valued sequence un. we apply this to MX (s) =
∑

n≤X
µ(n)
ns .

Letting un = µ(n)

n
1
2
, we get:

∫ T

0
MX (

1

2
+ it)2dt ≤ (T + πm0))

∑
n≤X

µ2(n)

n
+m0π

∑
n≤X

µ2(n)

Golnoush Farzanfard (U of L) Explicit zero density for the Riemann zeta function 36 / 49



Application

bounding
∫ T

0

∣∣MX (
1
2 + it)

∣∣2 dt
We use Montgomery and Vaughan’s mean value theorem for the sums
involving real-valued sequences:

∫ T

0

∣∣∣∣∣
∞∑
n=1

unn
it

∣∣∣∣∣
2

dt ≤
∑
n≥1

|un|2 (T + πm0(n + 1)) .

For a real-valued sequence un. we apply this to MX (s) =
∑

n≤X
µ(n)
ns .

Letting un = µ(n)

n
1
2
, we get:

∫ T

0
MX (

1

2
+ it)2dt ≤ (T + πm0))

∑
n≤X

µ2(n)

n
+m0π

∑
n≤X

µ2(n)

Golnoush Farzanfard (U of L) Explicit zero density for the Riemann zeta function 36 / 49



Application

bounds on
∑

n≤X µ2(n) and
∑

n≤X
µ2(n)
n

Here, we have bounds provided by Ramare. For each X ≥ 1700, we have∑
n≤X

µ2(n) ≤ 0.62X (14)

and for X ≥ 1000, we have∑
n≤X

µ2(n)

n
≤ 6

π2
logX + 1.048. (15)

By combining these two bounds and simplification, we obtain below bound:∫ T

0
|MX (

1

2
+ it)|2dt ≤ (C1T + C2X ) logX .
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Application

Bounds for F (12 ,T )

Now with the combination of the bounds of the integral∫ T
0

∣∣M(12 + it)
∣∣2 dt and different bounds with different shapes for zeta

function on the half line, we derive the following estimates for F (12 ,T ):

F (12 ,T ) ≤ D1T
4
3 log2 T

F (12 ,T ) ≤ D ′
1t

109
82

Remark

In our thesis we will, at this stage, keep lower order terms.
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Application

Bounding F (1 + δ
logX ,T )

Based on the expansion of f , We can write,

F (σ2,T ) =

∫ T

0
|f (σ2 + it)|2 dt =

∫ T

0

∣∣∣∣∣∣
∑
n≥1

λ(n)

nσ2+it

∣∣∣∣∣∣
2

dt.

Letting un = λX (n)
nσ2 and using the Montgomery and Vaughan’s mean value

theorem, we obtain below bound:

πm0

∑
n≥1

λX (n)
2

n2σ2−1
+ (T + πm0)

∑
n≥1

λX (n)
2

n2σ2
.

For finding the upper bound for the above summations, we rewrite the
bounds provided by Ramare but improved the constants.
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Application

Bounds on
∑

n≥1
λX (n)

2

n2σ2−1 and
∑

n≥1
λX (n)

2

n2σ2

Ramare provided below bounds:

∑
n≥1

λX (n)
2

n1+2 δ
log X

≤ b4
2δ

(
1 +

2δ

logX

)2

e
2δγ
log X (logX )2, (16)

and ∑
n≥1

λX (n)
2

n2+
2δ
log x

≤ b4
5δeδ

(
1 +

δ

logX

)2 (logX )2

X
+

b3e
−2δ

X
. (17)

where b4 = 0.529.

Our Contribution:

A.Fiori and G.Farzanfard improved the bounds by improving the constant
b4 to 0.470 and removing the δ

logX .
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Application

Bound on F (1 + δ
logX ,T )

By combining these two obtained bounds, we have:

F (1 +
δ

logX
,T ) ≤ (D2 +

T

X
D2) (logX )2 . (18)
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Application

Bounds on F (σ,T )

By the obtained bounds for FX (
1
2 ,T ) and FX (1 +

δ
logX ,T ) we can apply

our main theorem and provide two different versions of a bound for
F (σ,T ).

F (σ,T ) ≤ D3T
4
3
(

σ2−σ

σ2−σ1
)
logT

3(
σ2−σ

σ2−σ1
)+2(

σ−σ1
σ2−σ1

)
, (19)

F (σ,T ) ≤ D ′
3T

109
82

(
σ2−σ

σ2−σ1
)
logT

2(
σ−σ1
σ2−σ1

)
. (20)

Remark

This gives us a bound for the first integral.
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Application

Fourth Integral: −
∫ T2

T1
log |h(µ+ it)dt|

The fourth bound we need is an upper bound for −
∫ T2

T1
log |h(µ+ it)dt| or

equivalently an explicit lower bound for
∫ T2

T1
log |h(µ+ it)|dt. This is very

similar to bounding F (σ2,T ) that we had in the first integral.

Remark: µ ≥ 1.23622..., |f (µ+ it)| < 1.

− log |1− f (µ+ it)2| ≤ − log(1− |f (µ+ it)|2) ≤ b1|f (µ+ it)|2,

where b1 depends on the lower bound for f .

So by using the Montgomery and Vaughan’s mean value theorem, we have
the below bound for the last integral

−
∫ T2

T1

log |hX (µ+ it)|dt ≤ A(logX )3

X 2µ−2
+

B(logX )3T

X 2µ–1
.
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Application∫ µ

σ′ arg h(τ + iT2)dτ −
∫ µ

σ′ arg h(τ + iT1)dτ.

We are looking to bound the difference of two integrals that involve the
argument of a holomorphic function:∫ µ

σ′
arg h(τ + iT2)dτ −

∫ µ

6′
arg h(τ + iT1)dτ.

which is

≤ (µ− σ′) max
τ∈(σ′,µ)

(| arg h(τ + iT2)|+ | arg h(τ + iT1)|).
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Application

General Idea of bounding the |argh(τ + iU)|

Kadiri, Lumely and Ng proved a bound that

| arg h(σ + iU)| ≤ A(logT ),

for σ ∈ (0, 1 + ϵ) and h(σ + iU) ̸= 0.

This gives the following bound for the difference of the second and third
integral:

2A(µ− σ′) logT .
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Application

Future works

Problem 1. Kadiri, Lumely and Ng used Jensen’s formula and Backlund’s
trick to bound | arg |. We propose to instead use them to directly bound
the integral of the | arg |.
Problem 2. Improve the constant and potentially change the shape of the
upper bound.
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Application

Finally, after these steps, we are able to compile our bounds to obtain an
upper bound for the number of zeros, N(σ,T1,T2), in a given region.
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