Projective planes and Hadamard matrices

Hadi Kharaghani

University of Lethbridge Number Theory and Combinatorics Seminar

January 24, 2024

• 7 points,

• 7 points, 7 lines,

- 7 points, 7 lines,
- each point on 3 lines,

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,
- any two distinct lines meet at exactly one point,

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,
- any two distinct lines meet at exactly one point,
- any two distinct points lie on exactly one line.

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,
- any two distinct lines meet at exactly one point,
- any two distinct points lie on exactly one line.

The point-line incidence matrix of a p-plane is a matrix $D = [d_{ij}]$ obtained

The point-line incidence matrix of a p-plane is a matrix $D = [d_{ij}]$ obtained by Indexing the rows with the points

The point-line incidence matrix of a p-plane is a matrix $D = [d_{ij}]$ obtained by Indexing the rows with the points and columns with lines and assigning

The point-line incidence matrix of a p-plane is a matrix $D = [d_{ij}]$ obtained by Indexing the rows with the points and columns with lines and assigning

$$d_{ij} = \begin{cases} 1 & \text{if point i is on line j} \\ 0 & \text{otherwise} \end{cases}$$

The point-line incidence matrix of a p-plane is a matrix $D = [d_{ij}]$ obtained by Indexing the rows with the points and columns with lines and assigning

$$d_{ij} = \begin{cases} 1 & \text{if point i is on line j} \\ 0 & \text{otherwise} \end{cases}$$

Example

For n = 2 one incidence matrix is

The point-line incidence matrix of a p-plane is a matrix $D = [d_{ij}]$ obtained by Indexing the rows with the points and columns with lines and assigning

$$d_{ij} = egin{cases} 1 & ext{if point i is on line j} \\ 0 & ext{otherwise} \end{cases}$$

Example

For n = 2 one incidence matrix is

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

A (finite) projective plane of order n has

• $n^2 + n + 1$ points

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points
- every point is on n+1 lines

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points
- every point is on n+1 lines
- any two distinct lines meet at exactly one point

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points
- every point is on n+1 lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

A (finite) projective plane of order n has

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points
- every point is on n+1 lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^2 + 10 + 1 = 111$ lines and points.

A (finite) projective plane of order n has

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points
- every point is on n+1 lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^2+10+1=111$ lines and points. The p-l incidence matrix is of order 111 with 11 ones in each row and column,

A (finite) projective plane of order n has

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points
- every point is on n+1 lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^2+10+1=111$ lines and points. The p-l incidence matrix is of order 111 with 11 ones in each row and column, and the inner product of any two distinct rows (columns) must be one.

A (finite) projective plane of order n has

- $n^2 + n + 1$ points
- $n^2 + n + 1$ lines
- every line contains n+1 points
- every point is on n+1 lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^2+10+1=111$ lines and points. The p-l incidence matrix is of order 111 with 11 ones in each row and column, and the inner product of any two distinct rows (columns) must be one.

Wow! 111×111 matrix!

Wow! 111×111 matrix! That is too large!

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search—after about 2000 hours of computations on a CRAY-1A supercomputer in 1988. The complexity at the time involved over 10^{14} cases to be checked.

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search—after about 2000 hours of computations on a CRAY-1A supercomputer in 1988. The complexity at the time involved over 10^{14} cases to be checked.

A New York Times headline in December 1988 read:

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search—after about 2000 hours of computations on a CRAY-1A supercomputer in 1988. The complexity at the time involved over 10^{14} cases to be checked.

A New York Times headline in December 1988 read:

Is a math proof a proof if no one can check it?

• Existence: There is a projective plane of order q for any prime power q.

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order *n*,

$$n \equiv 1, 2 \pmod{4}$$
,

and n not a sum of two integer squares. None of order

$$6, 14, 21, 22, 30, \cdots$$

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order *n*,

$$n \equiv 1, 2 \pmod{4}$$
,

and n not a sum of two integer squares. None of order

$$6, 14, 21, 22, 30, \cdots$$

• Open Problem: The first open order is order 12.

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order *n*,

$$n \equiv 1, 2 \pmod{4}$$
,

and n not a sum of two integer squares. None of order

$$6, 14, 21, 22, 30, \cdots$$

• Open Problem: **The first open order is order 12**. That is the existence of a (0,1)-matrix of order 157 with 13 one in each row and column and inner product of distinct rows one.

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order *n*,

$$n \equiv 1, 2 \pmod{4}$$
,

and n not a sum of two integer squares. None of order

$$6, 14, 21, 22, 30, \cdots$$

• Open Problem: **The first open order is order 12**. That is the existence of a (0,1)-matrix of order 157 with 13 one in each row and column and inner product of distinct rows one.

Bush-type Hadamard matrices

Example: A Bush-type Hadamard matrix of order 16

K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices

A Bush-type Hadamard matrix is a block matrix $H = [H_{ij}]$ of order $4n^2$ with block size 2n,

A Bush-type Hadamard matrix is a block matrix $H = [H_{ij}]$ of order $4n^2$ with block size 2n, $H_{ii} = J_{2n}$

A Bush-type Hadamard matrix is a block matrix $H = [H_{ij}]$ of order $4n^2$ with block size 2n, $H_{ii} = J_{2n}$ and $H_{ij}J_{2n} = J_{2n}H_{ij} = 0$, $i \neq j$, $1 \leq i \leq 2n$, $1 \leq j \leq 2n$, where J_{2n} is the 2n by 2n matrix of all entries 1.

A Bush-type Hadamard matrix is a block matrix $H = [H_{ij}]$ of order $4n^2$ with block size 2n, $H_{ii} = J_{2n}$ and $H_{ij}J_{2n} = J_{2n}H_{ij} = 0$, $i \neq j$, $1 \leq i \leq 2n$, $1 \leq j \leq 2n$, where J_{2n} is the 2n by 2n matrix of all entries 1.

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10,

A Bush-type Hadamard matrix is a block matrix $H = [H_{ij}]$ of order $4n^2$ with block size 2n, $H_{ii} = J_{2n}$ and $H_{ij}J_{2n} = J_{2n}H_{ij} = 0$, $i \neq j$, $1 \leq i \leq 2n$, $1 \leq j \leq 2n$, where J_{2n} is the 2n by 2n matrix of all entries 1.

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10, then there is a **symmetric** Bush-type Hadamard matrix of order 100.

A Bush-type Hadamard matrix is a block matrix $H = [H_{ij}]$ of order $4n^2$ with block size 2n, $H_{ii} = J_{2n}$ and $H_{ij}J_{2n} = J_{2n}H_{ij} = 0$, $i \neq j$, $1 \leq i \leq 2n$, $1 \leq j \leq 2n$, where J_{2n} is the 2n by 2n matrix of all entries 1.

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10, then there is a **symmetric** Bush-type Hadamard matrix of order 100.

 Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters (36, 15, 6, 6) and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters (36, 15, 6, 6) and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters (36, 15, 6, 6) and chromatic number six, or equivalently, there is no **symmetric** Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10.

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters (36, 15, 6, 6) and chromatic number six, or equivalently, there is no **symmetric** Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10.
- There are many known symmetric Bush-type Hadamard matrix of order 144,

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters (36, 15, 6, 6) and chromatic number six, or equivalently, there is no **symmetric** Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10.
- There are many known **symmetric** Bush-type Hadamard matrix of order 144, and thus a new approach (or link) is needed for the problems related to the projective planes of order $16n^2$,

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters (36, 15, 6, 6) and chromatic number six, or equivalently, there is no **symmetric** Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10.
- There are many known **symmetric** Bush-type Hadamard matrix of order 144, and thus a new approach (or link) is needed for the problems related to the projective planes of order $16n^2$,

Balancedly Splittable Hadamard matrices

Here is a balancedly splitted Hadamard matrix of order 4:

$$H = \left[\frac{H_1}{H_2} \right] = \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & - & -\\ \frac{1}{1} & - & - & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} \frac{H_1}{H_2} \end{bmatrix} = \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & - & - & \frac{1}{1} \end{bmatrix}$$

Every normalized Hadamard matrix is balancedly splittable in this way.

Here is a twin balancedly splitted Hadamard matrix of order 16:

Here is a twin balancedly splitted Hadamard matrix of order 16:

Two sets of 16 Equiangular Lines in \mathbb{R}^6 .

Two sets of 16 Equiangular Lines in \mathbb{R}^6 .

```
65552525252552552
                    「6ううううつうつううつつうつつう<sup>™</sup>
26222222222222
                    26222222222222
22622222222222
                    226222222222222
222622222222222
2525655525522255
                    222226222222222
                    222226222222222
22222262222222222
                    222222622222222
22222222222222
                    2525555652252255
2222222222222
                    22222226222222
22222222622222
                    22222222622222
                    2222222222222
22222222222
                    222222222222222
22222222222622
222222222222622
                    222222222222622
2222222222222
                    22222222222262
2222222222222
                    22222222222222
```

The corresponding angle between lines is $arccos(\frac{1}{3})$ for both sets of lines.

```
65552525252552552
                    「6ううううつうつううつつうつつう<sup>™</sup>
26222222222222
                    26222222222222
22622222222222
                    226222222222222
222622222222222
2525655525522255
                    222226222222222
                    222226222222222
22222262222222222
                    222222622222222
22222222222222
                    2525555652252255
2222222222222
                    22222226222222
22222222622222
                    22222222622222
                    2222222222222
22222222222
                    222222222222222
22222222222622
222222222222622
                    222222222222622
2222222222222
                    22222222222262
2222222222222
                    22222222222222
```

The corresponding angle between lines is $arccos(\frac{1}{3})$ for both sets of lines.

Sixteen Equiangular Lines in \mathbb{R}^{10} .

Sixteen Equiangular Lines in \mathbb{R}^{10} .

The corresponding angle between lines is $arccos(\frac{1}{5})$.

The corresponding angle between lines is $arccos(\frac{1}{5})$.

Sixteen Equiangular Lines in \mathbb{R}^{10} .

Sixteen Equiangular Lines in \mathbb{R}^{10} .

The corresponding angle between lines is $arccos(\frac{1}{5})$.

The corresponding angle between lines is $arccos(\frac{1}{5})$.

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix},$$

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix},$$

such that $H_1^t H_1$ has at most two distinct off-diagonal entries.

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix},$$

such that $H_1^t H_1$ has at most two distinct off-diagonal entries.

Let $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ be a balancedly splittable Hadamard matrix of order n, where H_1 is an $\ell \times n$ matrix.

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix},$$

such that $H_1^t H_1$ has at most two distinct off-diagonal entries.

Let $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ be a balancedly splittable Hadamard matrix of order n, where H_1 is an $\ell \times n$ matrix. Then, there exist a positive integer a and a (0,-1,1)-matrix S such that

$$H_1^t H_1 = \ell I_n + aS,$$

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix},$$

such that $H_1^t H_1$ has at most two distinct off-diagonal entries.

Let $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ be a balancedly splittable Hadamard matrix of order n, where H_1 is an $\ell \times n$ matrix. Then, there exist a positive integer a and a (0,-1,1)-matrix S such that

$$H_1^t H_1 = \ell I_n + aS,$$

and in this case $(\ell,a)=(\frac{n\pm\sqrt{n}}{2},\frac{\sqrt{n}}{2})$,

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix},$$

such that $H_1^t H_1$ has at most two distinct off-diagonal entries.

Let $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ be a balancedly splittable Hadamard matrix of order n, where H_1 is an $\ell \times n$ matrix. Then, there exist a positive integer a and a (0,-1,1)-matrix S such that

$$H_1^t H_1 = \ell I_n + aS,$$

and in this case $(\ell,a)=(\frac{n\pm\sqrt{n}}{2},\frac{\sqrt{n}}{2})$, and the notation (n,ℓ,a) is used for $\ell=\frac{n-\sqrt{n}}{2}$ throughout.

Delsarte, Goethals and Seidel (DGS)(1975):

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^m$ be a set of unit vectors such that $|\langle v, w \rangle| = \alpha$ for all $v, w \in X, v \neq w$. If $m < \frac{1}{\alpha^2}$, then

$$|X| \leq \frac{m(1-\alpha^2)}{1-m\alpha^2}.$$

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^m$ be a set of unit vectors such that $|\langle v, w \rangle| = \alpha$ for all $v, w \in X, v \neq w$. If $m < \frac{1}{\alpha^2}$, then

$$|X| \leq \frac{m(1-\alpha^2)}{1-m\alpha^2}.$$

 \bullet The 16 Equiangular Lines in \mathbb{R}^6 meet the DGS-upper bound with $\alpha=\frac{1}{3}$

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^m$ be a set of unit vectors such that $|\langle v, w \rangle| = \alpha$ for all $v, w \in X, v \neq w$. If $m < \frac{1}{\alpha^2}$, then

$$|X| \leq \frac{m(1-\alpha^2)}{1-m\alpha^2}.$$

- \bullet The 16 Equiangular Lines in \mathbb{R}^6 meet the DGS-upper bound with $\alpha=\frac{1}{3}$
- \bullet The 16 Equiangular Lines in \mathbb{R}^{10} meet the DGS-upper bound with $\alpha=\frac{1}{5}.$

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^m$ be a set of unit vectors such that $|\langle v, w \rangle| = \alpha$ for all $v, w \in X, v \neq w$. If $m < \frac{1}{\alpha^2}$, then

$$|X| \leq \frac{m(1-\alpha^2)}{1-m\alpha^2}.$$

- \bullet The 16 Equiangular Lines in \mathbb{R}^6 meet the DGS-upper bound with $\alpha=\frac{1}{3}$
- \bullet The 16 Equiangular Lines in \mathbb{R}^{10} meet the DGS-upper bound with $\alpha=\frac{1}{5}.$

Nonexistence

Let x, y, x, w be non-negative integers such that

the first column =
$$(+\cdots + +\cdots + +\cdots + +\cdots +)^{\top}$$
, the *i*-th column = $(+\cdots + +\cdots + -\cdots - -\cdots -)^{\top}$, the *j*-th column = $(+\cdots + +\cdots + -\cdots - -\cdots -)^{\top}$.

Let x, y, x, w be non-negative integers such that

the first column =
$$(+\cdots+ +\cdots+ +\cdots+ +\cdots+)^{\top}$$
,
the *i*-th column = $(+\cdots+ +\cdots+ -\cdots- -\cdots-)^{\top}$,
the *j*-th column = $(+\cdots+ +\cdots+ -\cdots- +\cdots+)^{\top}$.

Then it follows that

$$\begin{cases} x + y + z + w &= \ell, \\ x + y - z - w &= a, \\ x - y + z - w &= a, \\ x - y - z + w &= -a. \end{cases}$$

Let x, y, x, w be non-negative integers such that

the first column =
$$(+\cdots + +\cdots + +\cdots + +\cdots +)^{\top}$$
, the *i*-th column = $(+\cdots + +\cdots + -\cdots - -\cdots -)^{\top}$, the *j*-th column = $(+\cdots + +\cdots + -\cdots - +\cdots + -\cdots -)^{\top}$.

Then it follows that

$$\begin{cases} x + y + z + w &= \ell, \\ x + y - z - w &= a, \\ x - y + z - w &= a, \\ x - y - z + w &= -a. \end{cases}$$

Solving these equations yields $(x, y, z, w) = (\frac{\ell + a}{4}, \frac{\ell + a}{4}, \frac{\ell + a}{4}, \frac{\ell - 3a}{4}).$

Let x, y, x, w be non-negative integers such that

the first column =
$$(+\cdots + +\cdots + +\cdots + +\cdots +)^{\top}$$
, the *i*-th column = $(+\cdots + +\cdots + -\cdots - -\cdots -)^{\top}$, the *j*-th column = $(+\cdots + +\cdots + -\cdots - +\cdots -)^{\top}$.

Then it follows that

$$\begin{cases} x + y + z + w &= \ell, \\ x + y - z - w &= a, \\ x - y + z - w &= a, \\ x - y - z + w &= -a. \end{cases}$$

Solving these equations yields $(x, y, z, w) = (\frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell-3a}{4})$. Therefore, $\ell + a \equiv 0 \pmod{4}$.

Let x, y, x, w be non-negative integers such that

the first column =
$$(+\cdots + +\cdots + +\cdots + +\cdots +)^{\top}$$
, the *i*-th column = $(+\cdots + +\cdots + -\cdots - -\cdots -)^{\top}$, the *j*-th column = $(+\cdots + +\cdots + -\cdots - +\cdots + -\cdots -)^{\top}$.

Then it follows that

$$\begin{cases} x + y + z + w &= \ell, \\ x + y - z - w &= a, \\ x - y + z - w &= a, \\ x - y - z + w &= -a. \end{cases}$$

Solving these equations yields $(x, y, z, w) = (\frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell-3a}{4})$. Therefore, $\ell + a \equiv 0 \pmod{4}$.

No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.

Existence

Theorem (K, Pender, Suda, DCC 2021)

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix.

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix.

The construction consists of building patiently nine submatrices

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}.$$

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix.

The construction consists of building patiently nine submatrices

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}.$$

Summary

• There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix.

• There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.

- There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.

- There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable. Case of n = 3 shows the nonexistence of order 36.

- There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable. Case of n = 3 shows the nonexistence of order 36.
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of n = 144.

- There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable. Case of n = 3 shows the nonexistence of order 36.
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of n = 144.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of n = 144.

- There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable. Case of n = 3 shows the nonexistence of order 36.
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of n = 144.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of n = 144.
- Question: Is there a balancedly splittable Hadamard matrix of order $16(3)^2 = 144$?

- There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable. Case of n = 3 shows the nonexistence of order 36.
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of n = 144.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of n = 144.
- Question: Is there a balancedly splittable Hadamard matrix of order $16(3)^2 = 144$?
- Question: Is there a balancedly splittable Hadamard matrix of order $16n^2$, n an odd integer?

- There is a balancedly splittable Hadamard matrix of order $64n^2$ for any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3) leading to order $576 = 64(3)^2$.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable. Case of n = 3 shows the nonexistence of order 36.
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of n = 144.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of n = 144.
- Question: Is there a balancedly splittable Hadamard matrix of order $16(3)^2 = 144$?
- Question: Is there a balancedly splittable Hadamard matrix of order $16n^2$, n an odd integer?

• The most important Hadamard matrix:

$$\begin{pmatrix} 1 & 1 \\ 1 & - \end{pmatrix}$$

Auxiliary matrices:

$$c_0 = \begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}, \qquad c_1 = \begin{pmatrix} 1 & - \ - & 1 \end{pmatrix}$$

S1: Form the block Barker sequence

S1: Form the block Barker sequence

•

$$(c_0,c_1)$$

is a block Barker sequence with block autocorrelation 0

S1: Form the block Barker sequence

•

$$(c_0,c_1)$$

is a block Barker sequence with block autocorrelation 0

S2: Form the block Golay sequence

S1: Form the block Barker sequence

0

$$(c_0,c_1)$$

is a block Barker sequence with block autocorrelation 0

S2: Form the block Golay sequence

The sequences

$$(c_0, c_1, c_1)$$
 $(c_0, c_1, -c_1)$

form a block Golay pair with sum of autocorrelation 0.

S1: Form the block Barker sequence

0

$$(c_0,c_1)$$

is a block Barker sequence with block autocorrelation 0

- S2: Form the block Golay sequence
 - The sequences

$$(c_0, c_1, c_1)$$
 $(c_0, c_1, -c_1)$

form a block Golay pair with sum of autocorrelation 0.

S3: Form two block circulant matrices

S1: Form the block Barker sequence

0

$$(c_0,c_1)$$

is a block Barker sequence with block autocorrelation 0

S2: Form the block Golay sequence

The sequences

$$(c_0, c_1, c_1)$$
 $(c_0, c_1, -c_1)$

form a block Golay pair with sum of autocorrelation 0.

S3: Form two block circulant matrices

• bcirc $(c_0c_1c_1)$ bcirc $(c_0c_1\bar{c}_1)$ form a block complementary pair with block autocorrelation 0

S1: Form the block Barker sequence

0

$$(c_0,c_1)$$

is a block Barker sequence with block autocorrelation 0

S2: Form the block Golay sequence

The sequences

$$(c_0, c_1, c_1)$$
 $(c_0, c_1, -c_1)$

form a block Golay pair with sum of autocorrelation 0.

S3: Form two block circulant matrices

• bcirc $(c_0c_1c_1)$ bcirc $(c_0c_1\bar{c}_1)$ form a block complementary pair with block autocorrelation 0

Form the matrices

Form the matrices

A=bcirc(
$$c_0c_1c_1$$
), B=bcirc($c_0c_1\bar{c}_1$)

Form the matrices

A=bcirc(
$$c_0c_1c_1$$
), B=bcirc($c_0c_1\bar{c}_1$)

Then the matrix

And

Balancedly multi-splittable Hadamard matrices

A balanced multi-splitted Hadamard matrix of order 16

A balanced multi-splitted Hadamard matrix of order 16

An Orthogonal Array; OA(5,4) on $\{1,2,3,4\}$

An Orthogonal Array; OA(5,4) on $\{1,2,3,4\}$ is a $4^2 \times 5$ matrix on $\{1,2,3,4\}$ alphabets.

An Orthogonal Array; OA(5,4) on $\{1,2,3,4\}$ is a $4^2 \times 5$ matrix on $\{1,2,3,4\}$ alphabets.

```
1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 3 3 3 3 4 4 4 4 4 2 2 1 4 3 2 4 3 3 1 4 4 4 2 2 1 3 3 2 4 3 1 4 1 4 2 3 4 4 1 3 2 4 1 3 2 4 1 4 3 2 4 1 3 1 4 1 4 2 3 4 4 1 3 2 4 1 4 3 2 4 1 1
```

An Orthogonal Array; OA(5,4) on $\{1,2,3,4\}$ is a $4^2 \times 5$ matrix on $\{1,2,3,4\}$ alphabets.

```
T11111
12222
13333
14444
21234
22143
23412
24321
31342
33124
34213
34213
34213
441423
44132
42314
43241
```

A normalized Hadamard matrix H_4 :

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{bmatrix}$$

From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from which the first column is removed

Definition

A Hadamard matrix H of order $4n^2$ is said to be balancedly multi-splittable, BMS,

Definition

A Hadamard matrix H of order $4n^2$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{2n+1} \end{bmatrix}$, where each H_i is of order $4n^2 \times (2n-1)$

Definition

A Hadamard matrix H of order $4n^2$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{2n+1} \end{bmatrix}$, where each H_i is of order $4n^2 \times (2n-1)$ such that H is balancedly splitable with respect to a submatrix $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ for any n-element subset $\{i_1, \ldots, i_n\}$ of $\{1, 2, \ldots, 2n+1\}$,

Definition

A Hadamard matrix H of order $4n^2$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{2n+1} \end{bmatrix}$, where each H_i is of order $4n^2 \times (2n-1)$ such that H is balancedly splitable with respect to a submatrix $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ for any n-element subset $\{i_1, \ldots, i_n\}$ of $\{1, 2, \ldots, 2n+1\}$, that is, the inner product of any distinct rows of $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ is $\pm n$.

Definition

A Hadamard matrix H of order $4n^2$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{2n+1} \end{bmatrix}$, where each H_i is of order $4n^2 \times (2n-1)$ such that H is balancedly splitable with respect to a submatrix $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ for any n-element subset $\{i_1,\ldots,i_n\}$ of $\{1,2,\ldots,2n+1\}$, that is, the inner product of any distinct rows of $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4ⁿ for each positive integer n.

Definition

A Hadamard matrix H of order $4n^2$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{2n+1} \end{bmatrix}$, where each H_i is of order $4n^2 \times (2n-1)$ such that H is balancedly splitable with respect to a submatrix $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ for any n-element subset $\{i_1,\ldots,i_n\}$ of $\{1,2,\ldots,2n+1\}$, that is, the inner product of any distinct rows of $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4ⁿ for each positive integer n.

Conjecture: Hadamard matrices of order 4ⁿ are the only Hadamard matrices which are BMS.

Definition

A Hadamard matrix H of order $4n^2$ is said to be balancedly multi-splittable, BMS, if there is a block form of $H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{2n+1} \end{bmatrix}$, where each H_i is of order $4n^2 \times (2n-1)$ such that H is balancedly splitable with respect to a submatrix $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ for any n-element subset $\{i_1,\ldots,i_n\}$ of $\{1,2,\ldots,2n+1\}$, that is, the inner product of any distinct rows of $\begin{bmatrix} H_{i_1} & \cdots & H_{i_n} \end{bmatrix}$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4ⁿ for each positive integer n.

Conjecture: Hadamard matrices of order 4ⁿ are the only Hadamard matrices which are BMS.

Hadamard matrices related to projective planes

We have used an OA(5,4) on 4 symbols and a H4,

What happens if one uses an OA(13,12) and a H12?

What happens if one uses an OA(13,12) and a H12? It is not known if there is an OA(13,12) on 12 symbols,

What happens if one uses an OA(13,12) and a H12? It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a projective plane of order 12.

What happens if one uses an OA(13,12) and a H12? It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^2 .

What happens if one uses an OA(13,12) and a H12? It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^2 .

There is a projective plane of order 12 if and only if there is a BMS Hadamard matrix of order 144.

What happens if one uses an OA(13,12) and a H12? It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^2 .

There is a projective plane of order 12 if and only if there is a BMS Hadamard matrix of order 144, i.e. a Hadamard matrix of order 144 in such a way that there are 1716 different choices of 66 columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound.

What happens if one uses an OA(13,12) and a H12? It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^2 .

There is a projective plane of order 12 if and only if there is a BMS Hadamard matrix of order 144, i.e. a Hadamard matrix of order 144 in such a way that there are 1716 different choices of 66 columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound.

An OA(13, 12) is a 144×13 matrix on 12 alphabets.

An OA(13, 12) is a 144×13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12

An OA(13, 12) is a 144×13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

An OA(13, 12) is a 144×13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

The result is a 144 \times 143 (1, -1)-matrix with inner product of distinct rows -1.

An OA(13, 12) is a 144×13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

The result is a 144 \times 143 (1, -1)-matrix with inner product of distinct rows -1.

By adding a column of ones, a BMS Hadamard matrix (with parameters (144,66,6)) is obtained.

An OA(13, 12) is a 144×13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

The result is a 144 \times 143 (1, -1)-matrix with inner product of distinct rows -1.

By adding a column of ones, a BMS Hadamard matrix (with parameters (144,66,6)) is obtained.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 × (11) matrix.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 × (11) matrix.

Lemma

For any i, $H_iH_i^{\top}$ is a matrix with entries in $\{-1,11\}$.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 \times (11) matrix.

Lemma

For any i, $H_iH_i^{\top}$ is a matrix with entries in $\{-1,11\}$.

For each i, consider the matrix $\tilde{H}_i = \begin{bmatrix} \mathbf{1} & H_i \end{bmatrix}$.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 × (11) matrix.

Lemma

For any i, $H_iH_i^{\top}$ is a matrix with entries in $\{-1,11\}$.

For each i, consider the matrix $\tilde{H}_i = \begin{bmatrix} \mathbf{1} & H_i \end{bmatrix}$. It follows that $\tilde{H}_i \tilde{H}_i^{\top}$ is a (12,0)-matrix.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 \times (11) matrix.

Lemma

For any i, $H_iH_i^{\top}$ is a matrix with entries in $\{-1,11\}$.

For each i, consider the matrix $\tilde{H}_i = \begin{bmatrix} \mathbf{1} & H_i \end{bmatrix}$.

It follows that $\tilde{H}_i \tilde{H}_i^{\top}$ is a (12,0)-matrix. Thus some rows of \tilde{H}_i coincide.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 \times (11) matrix.

Lemma

For any i, $H_iH_i^{\top}$ is a matrix with entries in $\{-1,11\}$.

For each i, consider the matrix $\tilde{H}_i = \begin{bmatrix} \mathbf{1} & H_i \end{bmatrix}$.

It follows that $\tilde{H}_i \tilde{H}_i^{\top}$ is a (12,0)-matrix. Thus some rows of \tilde{H}_i coincide. Since $\tilde{H}_i^{\top} \tilde{H}_i = 144 I_{12}$, the rank of \tilde{H}_i is 12.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 × (11) matrix.

Lemma

For any i, $H_iH_i^{\top}$ is a matrix with entries in $\{-1,11\}$.

For each i, consider the matrix $\tilde{H}_i = \begin{bmatrix} \mathbf{1} & H_i \end{bmatrix}$.

It follows that $\tilde{H}_i \tilde{H}_i^{\top}$ is a (12,0)-matrix. Thus some rows of \tilde{H}_i coincide. Since $\tilde{H}_i^{\top} \tilde{H}_i = 144 I_{12}$, the rank of \tilde{H}_i is 12.

Therefore, there exist exactly 12 distinct rows of \tilde{H}_i that correspond to the rows of a Hadamard matrix, say \tilde{K}_i , of order 12.

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$H = \begin{bmatrix} \mathbf{1} & H_1 & \cdots & H_{13} \end{bmatrix},$$

where each H_i is a 144 × (11) matrix.

Lemma

For any i, $H_iH_i^{\top}$ is a matrix with entries in $\{-1,11\}$.

For each i, consider the matrix $\tilde{H}_i = \begin{bmatrix} \mathbf{1} & H_i \end{bmatrix}$.

It follows that $\tilde{H}_i \tilde{H}_i^{\top}$ is a (12,0)-matrix. Thus some rows of \tilde{H}_i coincide. Since $\tilde{H}_i^{\top} \tilde{H}_i = 144 I_{12}$, the rank of \tilde{H}_i is 12.

Therefore, there exist exactly 12 distinct rows of \tilde{H}_i that correspond to the rows of a Hadamard matrix, say \tilde{K}_i , of order 12.

That explains the difficulty in constructing a **balancedly** splittable Hadamard matrix of order 144!

That explains the difficulty in constructing a **balancedly** splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

That explains the difficulty in constructing a **balancedly** splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a **balancedly** splittable Hadamard matrix of order 144?

That explains the difficulty in constructing a **balancedly** splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a **balancedly** splittable Hadamard matrix of order 144?

An easier Open Question: Is there a balancedly multi-splittable Hadamard matrix of order 144?

That explains the difficulty in constructing a **balancedly** splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a **balancedly** splittable Hadamard matrix of order 144?

An easier Open Question: Is there a balancedly multi-splittable Hadamard matrix of order 144?

- Finite Projective plane.
- Orthogonal Array.
- Hadamard matrix.
- Bush-type Hadamard matrix.
- Balancedly splittable Hadamard matrix.
- Balancedly multi-splittable Hadamard matrix.
- Mutually Orthogonal Latin Square MOLS.
- Block Barker Sequence.
- Block Golay pair.

- Finite Projective plane.
- Orthogonal Array.
- Hadamard matrix.
- Bush-type Hadamard matrix.
- Balancedly splittable Hadamard matrix.
- Balancedly multi-splittable Hadamard matrix.
- Mutually Orthogonal Latin Square MOLS.
- Block Barker Sequence.
- Block Golay pair.
- Did I miss any?

- Finite Projective plane.
- Orthogonal Array.
- Hadamard matrix.
- Bush-type Hadamard matrix.
- Balancedly splittable Hadamard matrix.
- Balancedly multi-splittable Hadamard matrix.
- Mutually Orthogonal Latin Square MOLS.
- Block Barker Sequence.
- Block Golay pair.
- Did I miss any?
- Yes, I did! Equiangular lines

Thank you

Thank you

