Projective planes and Hadamard matrices

Hadi Kharaghani

University of Lethbridge
Number Theory and Combinatorics Seminar
January 24, 2024

University of
Lethbridge

A finite projective plane of order2

A finite projective plane of order2

- 7 points,

A finite projective plane of order2

- 7 points, 7 lines,

A finite projective plane of order2

- 7 points, 7 lines,
- each point on 3 lines,

A finite projective plane of order2

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,

A finite projective plane of order2

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,
- any two distinct lines meet at exactly one point,

A finite projective plane of order2

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,
- any two distinct lines meet at exactly one point,
- any two distinct points lie on exactly one line.

A finite projective plane of order2

- 7 points, 7 lines,
- each point on 3 lines, each line 3 points,
- any two distinct lines meet at exactly one point,
- any two distinct points lie on exactly one line.

Point-line incidence matrix

Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix $D=\left[d_{i j}\right]$ obtained

Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix $D=\left[d_{i j}\right]$ obtained by Indexing the rows with the points

Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix $D=\left[d_{i j}\right]$ obtained by Indexing the rows with the points and columns with lines and assigning

Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix $D=\left[d_{i j}\right]$ obtained by Indexing the rows with the points and columns with lines and assigning

$$
d_{i j}= \begin{cases}1 & \text { if point } \mathrm{i} \text { is on line } \mathrm{j} \\ 0 & \text { otherwise }\end{cases}
$$

Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix $D=\left[d_{i j}\right]$ obtained by Indexing the rows with the points and columns with lines and assigning

$$
d_{i j}= \begin{cases}1 & \text { if point } \mathrm{i} \text { is on line } \mathrm{j} \\ 0 & \text { otherwise }\end{cases}
$$

Example

For $n=2$ one incidence matrix is

Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix $D=\left[d_{i j}\right]$ obtained by Indexing the rows with the points and columns with lines and assigning

$$
d_{i j}= \begin{cases}1 & \text { if point } \mathrm{i} \text { is on line } \mathrm{j} \\ 0 & \text { otherwise }\end{cases}
$$

Example

For $n=2$ one incidence matrix is

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Finite projective plane of order n

Finite projective plane of order n

A (finite) projective plane of order n has

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points
- every point is on $n+1$ lines

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points
- every point is on $n+1$ lines
- any two distinct lines meet at exactly one point

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points
- every point is on $n+1$ lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points
- every point is on $n+1$ lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^{2}+10+1=111$ lines and points.

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points
- every point is on $n+1$ lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^{2}+10+1=111$ lines and points. The p-l incidence matrix is of order 111 with 11 ones in each row and column,

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points
- every point is on $n+1$ lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^{2}+10+1=111$ lines and points. The p-l incidence matrix is of order 111 with 11 ones in each row and column, and the inner product of any two distinct rows (columns) must be one.

Finite projective plane of order n

A (finite) projective plane of order n has

- $n^{2}+n+1$ points
- $n^{2}+n+1$ lines
- every line contains $n+1$ points
- every point is on $n+1$ lines
- any two distinct lines meet at exactly one point
- any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have $10^{2}+10+1=111$ lines and points. The p-l incidence matrix is of order 111 with 11 ones in each row and column, and the inner product of any two distinct rows (columns) must be one.

Existence of a projective plane of order 10

Existence of a projective plane of order 10

Wow! 111×111 matrix!

Existence of a projective plane of order 10

Wow! 111×111 matrix! That is too large!

Existence of a projective plane of order 10

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Existence of a projective plane of order 10

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search

Existence of a projective plane of order 10

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search after about 2000 hours of computations on a CRAY-1A supercomputer in 1988. The complexity at the time involved over 10^{14} cases to be checked.

Existence of a projective plane of order 10

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search after about 2000 hours of computations on a CRAY-1A supercomputer in 1988. The complexity at the time involved over 10^{14} cases to be checked.

A New York Times headline in December 1988 read:

Existence of a projective plane of order 10

Wow! 111×111 matrix! That is too large! So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his coauthors completed the last piece of search after about 2000 hours of computations on a CRAY-1A supercomputer in 1988. The complexity at the time involved over 10^{14} cases to be checked.

A New York Times headline in December 1988 read:
Is a math proof a proof if no one can check it?

Notes

Notes

- Existence: There is a projective plane of order q for any prime power q.

Notes

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order n,

$$
n \equiv 1,2 \quad(\bmod 4)
$$

and n not a sum of two integer squares. None of order

$$
6,14,21,22,30, \cdots
$$

Notes

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order n,

$$
n \equiv 1,2 \quad(\bmod 4)
$$

and n not a sum of two integer squares. None of order

$$
6,14,21,22,30, \cdots
$$

- Open Problem: The first open order is order 12.

Notes

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order n,

$$
n \equiv 1,2 \quad(\bmod 4)
$$

and n not a sum of two integer squares. None of order

$$
6,14,21,22,30, \cdots
$$

- Open Problem: The first open order is order 12. That is the existence of a $(0,1)$-matrix of order 157 with 13 one in each row and column and inner product of distinct rows one.

Notes

- Existence: There is a projective plane of order q for any prime power q.
- Nonexistence: There is no projective plane of order n,

$$
n \equiv 1,2 \quad(\bmod 4)
$$

and n not a sum of two integer squares. None of order

$$
6,14,21,22,30, \cdots
$$

- Open Problem: The first open order is order 12. That is the existence of a $(0,1)$-matrix of order 157 with 13 one in each row and column and inner product of distinct rows one.

Bush-type Hadamard matrices

Example: A Bush-type Hadamard matrix of order 16

$$
\left(\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - & 1 & - & 1 & 1 & - \\
1 & 1 & 1 & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & 1 & 1 & - \\
1 & 1 & 1 & 1 & - & - & 1 & 1 & - & 1 & - & 1 & 1 & - & - & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & 1 & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & 1 & 1 & - & - & 1 & - & 1 \\
- & - & 1 & 1 & 1 & 1 & 1 & 1 & - & 1 & 1 & - & 1 & - & 1 & - \\
- & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 \\
1 & - & 1 & - & 1 & - & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - \\
- & 1 & - & 1 & - & 1 & 1 & - & 1 & 1 & 1 & 1 & 1 & 1 & - & - \\
1 & - & 1 & - & - & 1 & 1 & - & 1 & 1 & 1 & 1 & - & - & 1 & 1 \\
- & 1 & - & 1 & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & 1 & 1 \\
1 & - & - & 1 & 1 & - & 1 & - & 1 & 1 & - & - & 1 & 1 & 1 & 1 \\
- & 1 & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & 1 & 1 \\
- & 1 & 1 & - & 1 & - & 1 & - & - & - & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & - & - & 1 & - & 1 & - & 1 & - & - & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix $H=\left[H_{i j}\right]$ of order $4 n^{2}$ with block size $2 n$,
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix $H=\left[H_{i j}\right]$ of order $4 n^{2}$ with block size $2 n, H_{i i}=J_{2 n}$
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix $H=\left[H_{i j}\right]$ of order $4 n^{2}$ with block size $2 n, H_{i i}=J_{2 n}$ and $H_{i j} J_{2 n}=J_{2 n} H_{i j}=0, i \neq j, 1 \leq i \leq 2 n$, $1 \leq j \leq 2 n$, where $J_{2 n}$ is the $2 n$ by $2 n$ matrix of all entries 1 .
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix $H=\left[H_{i j}\right]$ of order $4 n^{2}$ with block size $2 n, H_{i i}=J_{2 n}$ and $H_{i j} J_{2 n}=J_{2 n} H_{i j}=0, i \neq j, 1 \leq i \leq 2 n$, $1 \leq j \leq 2 n$, where $J_{2 n}$ is the $2 n$ by $2 n$ matrix of all entries 1 .

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10 ,
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix $H=\left[H_{i j}\right]$ of order $4 n^{2}$ with block size $2 n, H_{i i}=J_{2 n}$ and $H_{i j} J_{2 n}=J_{2 n} H_{i j}=0, i \neq j, 1 \leq i \leq 2 n$, $1 \leq j \leq 2 n$, where $J_{2 n}$ is the $2 n$ by $2 n$ matrix of all entries 1 .

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10, then there is a symmetric Bush-type Hadamard matrix of order 100.
K. A. Bush was the first to establish a link between projective planes of even order and specific Hadamard matrices that was later labeled as Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix $H=\left[H_{i j}\right]$ of order $4 n^{2}$ with block size $2 n, H_{i i}=J_{2 n}$ and $H_{i j} J_{2 n}=J_{2 n} H_{i j}=0, i \neq j, 1 \leq i \leq 2 n$, $1 \leq j \leq 2 n$, where $J_{2 n}$ is the $2 n$ by $2 n$ matrix of all entries 1 .

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10, then there is a symmetric Bush-type Hadamard matrix of order 100.

Notes

Notes

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters $(36,15,6,6)$ and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.

Notes

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters $(36,15,6,6)$ and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.

Notes

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters $(36,15,6,6)$ and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10 .

Notes

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters $(36,15,6,6)$ and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10 .
- There are many known symmetric Bush-type Hadamard matrix of order 144,

Notes

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters $(36,15,6,6)$ and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10 .
- There are many known symmetric Bush-type Hadamard matrix of order 144, and thus a new approach (or link) is needed for the problems related to the projective planes of order $16 n^{2}$,

Notes

- Bussemaker, Haemers, Spence [2000]: There is no strongly regular graph with parameters $(36,15,6,6)$ and chromatic number six, or equivalently, there is no symmetric Bush-type Hadamard matrix of order 36.
- There are over 40,000 inequivalent Bush-type Hadamard matrices of order 100 and none are symmetric.
- A proof of nonexistence of a symmetric Bush-type Hadamard matrix of order 100 would imply the nonexistence of 4 MOLS of order 10 and apriori a projection plane of order 10 .
- There are many known symmetric Bush-type Hadamard matrix of order 144, and thus a new approach (or link) is needed for the problems related to the projective planes of order $16 n^{2}$,

Balancedly Splittable Hadamard matrices

Here is a balancedly splitted Hadamard matrix of order 4:

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
H=\left[\begin{array}{l}
H_{1} \\
\hline H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right]
$$

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
\begin{aligned}
H & =\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right] \\
H_{1}^{t} H_{1} & =\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
\begin{gathered}
H=\left[\begin{array}{l}
H_{1} \\
\hline H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right] \\
H_{1}^{t} H_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \\
H_{2}^{t} H_{2}=\left[\begin{array}{llll}
3 & - & - & - \\
- & 3 & - & - \\
- & - & 3 & - \\
- & - & - & 3
\end{array}\right]
\end{gathered}
$$

Here is a balancedly splitted Hadamard matrix of order $4:-=-1$ and $\bar{a}=-a$.

$$
\begin{gathered}
H=\left[\begin{array}{l}
H_{1} \\
\hline H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right] \\
H_{1}^{t} H_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \\
H_{2}^{t} H_{2}=\left[\begin{array}{llll}
3 & - & - & - \\
- & 3 & - & - \\
- & - & 3 & - \\
- & - & - & 3
\end{array}\right]
\end{gathered}
$$

Every normalized Hadamard matrix is balancedly splittable in this way.

Here is a twin balancedly splitted Hadamard matrix of order 16:

Here is a twin balancedly splitted Hadamard matrix of order 16:

$$
\left[\begin{array}{l}
H_{0} \\
H_{1} \\
\hline H_{2}
\end{array}\right]=\left[\begin{array}{lllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 \\
\hline & 1 \\
\hline 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 \\
\hline
\end{array}\right]
$$

$$
H_{0}=\left[\begin{array}{ccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& H_{0}=\left[\begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}=\left[\begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}=\left[\begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Two sets of 16 Equiangular Lines in \mathbb{R}^{6}.

Two sets of 16 Equiangular Lines in \mathbb{R}^{6}.

$$
\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right]=\left[\begin{array}{llllllllllllllll}
1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 \\
1 & 1 & - & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 \\
1 & - & 1 & - & 1 & - & 1 & - & - & 1 & - & 1 & - & 1 & - & 1 \\
1 & - & - & 1 & - & 1 & 1 & - & - & 1 & 1 & - & 1 & - & - & 1 \\
\hline 1 & - & 1 & - & - & 1 & - & 1 & 1 & - & 1 & - & - & 1 & - & 1 \\
1 & - & - & 1 & - & 1 & 1 & - & 1 & - & - & 1 & - & 1 & 1 & - \\
1 & 1 & - & - & 1 & 1 & - & - & - & - & 1 & 1 & - & - & 1 & 1 \\
1 & - & - & 1 & 1 & - & - & 1 & - & 1 & 1 & - & - & 1 & 1 & - \\
1 & - & 1 & - & - & 1 & - & 1 & - & 1 & - & 1 & 1 & - & 1 & - \\
1 & - & - & - & 1 & - & - & 1 & 1 & 1 & 1 & - & -
\end{array}\right]
$$

	6 $\overline{2} \overline{2} \overline{2} 2 \overline{2} 2 \overline{2} 22 \overline{2} \overline{2} 2 \overline{2} 2$
	262 $\overline{2} \overline{2} 2 \overline{2} 222 \overline{2} \overline{2} 22 \overline{2}$
	$\overline{2} \overline{2} 6 \overline{2} 2 \overline{2} 2 \overline{2} \overline{2} 222222 \overline{2}$
	$2 \overline{2} 2 \overline{2} 6 \overline{2} \overline{2} 2 \overline{2} \overline{2} 222 \overline{2} \overline{2}$
	22 $22 \overline{2} 6 \overline{2} \overline{2} 222 \overline{2} 22 \overline{2}$
	2 $22 \overline{2} \overline{2} \overline{2} 6 \overline{2} 22 \overline{2} \overline{2} 22$
	$\overline{2} 2 \overline{2} 2 \overline{2} \overline{2} \overline{2} 2 \overline{2} \overline{2} 2 \overline{2} 222$
$H_{1}^{*} H_{1}=$	$22 \overline{2} \overline{2} 2 \overline{2} 26 \overline{2} \overline{2} 2 \overline{2} 2 \overline{2}$
	$\overline{2} 222 \overline{2} 22 \overline{2} \overline{2} \overline{2} \overline{2} 2 \overline{2} 2 \overline{2}$
	$2 \overline{2} 222 \overline{2} 2 \overline{2} 2 \overline{2} 6 \overline{2} \overline{2}$
	$2 \overline{2} 22 \overline{2} \overline{2} 22 \overline{2} 2 \overline{2} 2 \overline{2} \overline{2} \overline{2} 6$

	[$6 \overline{2} \overline{2} \overline{2} 2 \overline{2} 2 \overline{2} 22 \overline{2} \overline{2} 2 \overline{2} \overline{2} 27$		$\left[\frac{6}{6} \overline{2} \overline{2} \overline{2} \overline{2} 2 \overline{2} 2\right.$
	26 $\overline{2} \overline{2} \overline{2} 2 \overline{2} 222 \overline{2} \overline{2} 22 \overline{2}$		$\overline{2} 6 \overline{2} 2 \overline{2} 2 \overline{2} \overline{2} 2222 \overline{2} 2$
	$\overline{2} \overline{2} 6 \overline{2} 2 \overline{2} 2 \overline{2} \overline{2} 222 \overline{2} 22 \overline{2}$		$\overline{2} \overline{2} 6 \overline{2} 2 \overline{2} 222 \overline{2} 2 \overline{2} \overline{2} 2$
	$\overline{2} \overline{2} \overline{2} \overline{2} 2 \overline{2} 2 \overline{2} \overline{2} 222 \overline{2} 22$		$\overline{2} \overline{2} 62 \overline{2} 2 \overline{2} 22 \overline{2} \overline{2} 22 \overline{2}$
	$2 \overline{2} 2 \overline{2} 6 \overline{2} \overline{2} \overline{2} 2 \overline{2} \overline{2} 222 \overline{2} \overline{2}$		$\overline{2} 2 \overline{2} 26 \overline{2} \overline{2} \overline{2} 222 \overline{2} \overline{2} 222$
	$\overline{2} 2 \overline{2} 2 \overline{2} 6 \overline{2} \overline{2} \overline{2} 22 \overline{2} 22 \overline{2} \overline{2}$		$2 \overline{2} 2 \overline{2} \overline{2} \overline{2} \overline{2} 2 \overline{2} \overline{2} 2 \overline{2} \overline{2} 22$
	$2 \overline{2} 2 \overline{2} 26 \overline{2} 222 \overline{2} \overline{2} 22$		$\overline{2} 2 \overline{2} 2 \overline{2} \overline{2} 6 \overline{2} 2 \overline{2} 2222 \overline{2}$
H_{1}^{*}	$22 \overline{2} 2 \overline{2} 2 \underline{2}$	$\mathrm{H}_{2} \mathrm{H}_{2}=$	$\overline{2} \overline{2} 22 \overline{2} 22 \overline{2} \overline{2} \overline{2} \overline{2} \overline{2} 2 \overline{2} 2$
	22 $\overline{2} \overline{2} 222 \overline{2} \overline{2} \overline{2} \overline{2} \overline{2} 2 \overline{2} 2$		$\overline{2} 222 \overline{2} 22 \overline{2} 6 \overline{2} 2 \overline{2} 2 \overline{2}$
	2 $222 \overline{2} 22 \overline{2} \overline{2} \overline{2} \overline{2} 2 \overline{2} 2 \overline{2}$		$22 \overline{2} 22 \overline{2} \overline{2} 2 \overline{2} 6 \overline{2} 22 \overline{2} 2$
	$\overline{2} 222 \overline{2} 2 \overline{2} \overline{2} \mathbf{2} \overline{2} 2 \overline{2} 2$		
			$\overline{2} 22 \overline{2} \overline{2} 2222 \overline{2} 262 \overline{2}$
			$2 \overline{2} \overline{2} 2 \overline{2} 222 \overline{2} 2 \overline{2} \overline{2} \overline{2} \overline{2}$
	$\overline{2} 22 \overline{2} 2222 \overline{2} 2 \overline{2} 2 \overline{2}^{2}$		$2 \overline{2} 222 \overline{2} \overline{2} 2 \overline{2} 2 \overline{2} \overline{2} \overline{2}$
			[22 $2222 \overline{2} 2 \overline{2} 2 \overline{2} \overline{2} \overline{2} \overline{2} 6]$

$H_{1}^{t} H_{1}=$		$H_{2}^{t} H_{2}=$	

The corresponding angle between lines is $\arccos \left(\frac{1}{3}\right)$ for both sets of lines.

$H_{1}^{t} H_{1}=$		$H_{2}^{t} H_{2}=$	

The corresponding angle between lines is $\arccos \left(\frac{1}{3}\right)$ for both sets of lines.

Sixteen Equiangular Lines in \mathbb{R}^{10}.

Sixteen Equiangular Lines in \mathbb{R}^{10}.

$$
\left[\begin{array}{l}
H_{0} \\
H_{1}
\end{array}\right]=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 \\
1 & - & 1 & - & 1 & - & 1 & - & - & 1 & - & 1 & - & 1 & 1 \\
1 & - & - & 1 & - & 1 & 1 & - & - & 1 & 1 & - & 1 & - & - & 1
\end{array}\right]
$$

$$
H_{0}^{t} H_{0}+H_{1}^{t} H_{1}=\left[\begin{array}{cccccccccccccccc}
10 & 2 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 \\
2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} \\
2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} \\
2 & 2 & 2 & 10 & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \frac{2}{2} \\
2 & \overline{2} & 2 & \overline{2} & 10 & 2 & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} \\
2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 2 & 10 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 \\
2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 10 & 2 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
\overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
\overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & 2 & 10 & \overline{2} & 2 & \overline{2} & 2 \\
2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & 10 & 2 & 2 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 \\
2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 2 & 10
\end{array}\right]
$$

The corresponding angle between lines is $\arccos \left(\frac{1}{5}\right)$.

$$
H_{0}^{t} H_{0}+H_{1}^{t} H_{1}=\left[\begin{array}{cccccccccccccccc}
10 & 2 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 \\
2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} \\
2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} \\
2 & 2 & 2 & 10 & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \frac{2}{2} \\
2 & \overline{2} & 2 & \overline{2} & 10 & 2 & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} \\
2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 2 & 10 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 \\
2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 10 & 2 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
\overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
\overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & 2 & 10 & \overline{2} & 2 & \overline{2} & 2 \\
2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & 10 & 2 & 2 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 10 & 2 \\
2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 2 & 10
\end{array}\right]
$$

The corresponding angle between lines is $\arccos \left(\frac{1}{5}\right)$.

Sixteen Equiangular Lines in \mathbb{R}^{10}.

Sixteen Equiangular Lines in \mathbb{R}^{10}.

$$
\left[\begin{array}{l}
H_{0} \\
H_{2}
\end{array}\right]=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & - & - \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - \\
1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & 1 & 1 & 1 & 1 \\
\hline 1 & - & 1 & - & - & 1 & - & 1 & 1 & - & 1 & - & - & 1 & - & 1 \\
1 & - & - & 1 & - & 1 & 1 & - & 1 & - & - & 1 & - & 1 & 1 & - \\
1 & 1 & - & - & 1 & 1 & - & - & - & - & 1 & 1 & - & - & 1 & 1 \\
1 & - & - & 1 & 1 & - & - & 1 & - & 1 & 1 & - & - & 1 & 1 & - \\
1 & - & 1 & - & - & 1 & - & 1 & - & 1 & - & 1 & 1 & - & 1 & - \\
1 & 1 & - & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 & 1 & - & -
\end{array}\right]
$$

$$
H_{0}^{t} H_{0}+H_{2}^{t} H_{2}=\left[\begin{array}{cccccccccccccccc}
10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} \\
2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 \\
2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 \\
2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & \frac{2}{2} & 2 & \overline{2} \\
\overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 \\
2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} \\
2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} \\
\overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
\overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} \\
\overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 \\
2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 \\
2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10
\end{array}\right]
$$

The corresponding angle between lines is $\arccos \left(\frac{1}{5}\right)$.

$$
H_{0}^{t} H_{0}+H_{2}^{t} H_{2}=\left[\begin{array}{cccccccccccccccc}
10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} \\
2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 \\
2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 \\
2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & \frac{2}{2} & 2 & \overline{2} \\
\overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 \\
2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 \\
\overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} \\
2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} \\
\overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
\overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & 2 & 2 & 10 & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} \\
2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} & 2 \\
2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 & \overline{2} & 2 & \overline{2} \\
\overline{2} & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 & 2 \\
2 & \overline{2} & \overline{2} & 2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & 2 & \overline{2} & 2 & 10 & 2 & 2 \\
2 & \overline{2} & \overline{2} & 2 & 2 & 2 & \overline{2} & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10 & 2 \\
\overline{2} & 2 & 2 & \overline{2} & 2 & 2 & \overline{2} & \overline{2} & 2 & \overline{2} & 2 & \overline{2} & 2 & 2 & 2 & 10
\end{array}\right]
$$

The corresponding angle between lines is $\arccos \left(\frac{1}{5}\right)$.

Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.

Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.
Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splittable Hadamard matrix of order n, where H_{1} is an $\ell \times n$ matrix.

Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.
Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splittable Hadamard matrix of order n, where H_{1} is an $\ell \times n$ matrix. Then, there exist a positive integer a and a ($0,-1,1$)-matrix S such that

$$
H_{1}^{t} H_{1}=\ell I_{n}+a S,
$$

Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.
Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splittable Hadamard matrix of order n, where H_{1} is an $\ell \times n$ matrix. Then, there exist a positive integer a and a ($0,-1,1$)-matrix S such that

$$
H_{1}^{t} H_{1}=\ell I_{n}+a S,
$$

and in this case $(\ell, a)=\left(\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$,

Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its rows it can be transformed to

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right],
$$

such that $H_{1}^{t} H_{1}$ has at most two distinct off-diagonal entries.
Let $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ be a balancedly splittable Hadamard matrix of order n, where H_{1} is an $\ell \times n$ matrix. Then, there exist a positive integer a and a ($0,-1,1$)-matrix S such that

$$
H_{1}^{t} H_{1}=\ell I_{n}+a S,
$$

and in this case $(\ell, a)=\left(\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$, and the notation (n, ℓ, a) is used for $\ell=\frac{n-\sqrt{n}}{2}$ throughout.

An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^{m}$ be a set of unit vectors such that $|\langle v, w\rangle|=\alpha$ for all $v, w \in X, v \neq w$. If $m<\frac{1}{\alpha^{2}}$, then

$$
|X| \leq \frac{m\left(1-\alpha^{2}\right)}{1-m \alpha^{2}} .
$$

An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^{m}$ be a set of unit vectors such that $|\langle v, w\rangle|=\alpha$ for all $v, w \in X, v \neq w$. If $m<\frac{1}{\alpha^{2}}$, then

$$
|X| \leq \frac{m\left(1-\alpha^{2}\right)}{1-m \alpha^{2}} .
$$

- The 16 Equiangular Lines in \mathbb{R}^{6} meet the DGS-upper bound with $\alpha=\frac{1}{3}$

An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^{m}$ be a set of unit vectors such that $|\langle v, w\rangle|=\alpha$ for all $v, w \in X, v \neq w$. If $m<\frac{1}{\alpha^{2}}$, then

$$
|X| \leq \frac{m\left(1-\alpha^{2}\right)}{1-m \alpha^{2}}
$$

- The 16 Equiangular Lines in \mathbb{R}^{6} meet the DGS-upper bound with $\alpha=\frac{1}{3}$
- The 16 Equiangular Lines in \mathbb{R}^{10} meet the DGS-upper bound with $\alpha=\frac{1}{5}$.

An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let $X \subset \mathbb{R}^{m}$ be a set of unit vectors such that $|\langle v, w\rangle|=\alpha$ for all $v, w \in X, v \neq w$. If $m<\frac{1}{\alpha^{2}}$, then

$$
|X| \leq \frac{m\left(1-\alpha^{2}\right)}{1-m \alpha^{2}}
$$

- The 16 Equiangular Lines in \mathbb{R}^{6} meet the DGS-upper bound with $\alpha=\frac{1}{3}$
- The 16 Equiangular Lines in \mathbb{R}^{10} meet the DGS-upper bound with $\alpha=\frac{1}{5}$.

Nonexistence

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that

$$
\begin{aligned}
& \text { the first column }=(+\cdots+\quad+\cdots+\quad+\cdots+\quad+\cdots+)^{\top}, \\
& \text { the } i \text {-th column }=(+\cdots+\quad+\cdots+--\cdots-\quad-\cdots-)^{\top}, \\
& \text { the } j \text {-th column }=(\underbrace{+\cdots+}_{x \text { rows }} \underbrace{-\cdots-}_{y \text { rows }} \underbrace{+\cdots+}_{z \text { rows }} \underbrace{-\cdots-}_{w \text { rows }})^{\top} .
\end{aligned}
$$

Then it follows that

$$
\left\{\begin{array}{l}
x+y+z+w=\ell \\
x+y-z-w=a \\
x-y+z-w=a \\
x-y-z+w=-a
\end{array}\right.
$$

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that

$$
\begin{aligned}
& \text { the first column }=(+\cdots+\quad+\cdots+\quad+\cdots+\quad+\cdots+)^{\top}, \\
& \text { the } i \text {-th column }=(+\cdots+\quad+\cdots+--\cdots-\quad-\cdots-)^{\top}, \\
& \text { the } j \text {-th column }=(\underbrace{+\cdots+}_{x \text { rows }} \underbrace{-\cdots-}_{y \text { rows }} \underbrace{+\cdots+}_{z \text { rows }} \underbrace{-\cdots-}_{w \text { rows }})^{\top} .
\end{aligned}
$$

Then it follows that

$$
\left\{\begin{array}{l}
x+y+z+w=\ell \\
x+y-z-w=a \\
x-y+z-w=a \\
x-y-z+w=-a
\end{array}\right.
$$

Solving these equations yields $(x, y, z, w)=\left(\frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell-3 a}{4}\right)$.

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that

$$
\begin{aligned}
& \text { the first column }=(+\cdots+\quad+\cdots+\quad+\cdots+\quad+\cdots+)^{\top}, \\
& \text { the } i \text {-th column }=(+\cdots+\quad+\cdots+--\cdots-\quad-\cdots-)^{\top}, \\
& \text { the } j \text {-th column }=(\underbrace{+\cdots+}_{x \text { rows }} \underbrace{-\cdots-}_{y \text { rows }} \underbrace{+\cdots+}_{z \text { rows }} \underbrace{-\cdots-}_{w \text { rows }})^{\top} .
\end{aligned}
$$

Then it follows that

$$
\left\{\begin{array}{l}
x+y+z+w=\ell \\
x+y-z-w=a \\
x-y+z-w=a \\
x-y-z+w=-a
\end{array}\right.
$$

Solving these equations yields $(x, y, z, w)=\left(\frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell-3 a}{4}\right)$. Therefore, $\ell+a \equiv 0(\bmod 4)$.

There is no balancedly splittable Hadamard matrix with the parameters $(n, \ell, a), \ell+a \not \equiv 0(\bmod 4)$.
Let x, y, x, w be non-negative integers such that
the first column $=(+\cdots+\quad+\cdots+\quad+\cdots+\quad+\cdots+)^{\top}$,
the i-th column $=(+\cdots++\cdots+-\cdots-\quad-\cdots-)^{\top}$,

Then it follows that

$$
\left\{\begin{array}{l}
x+y+z+w=\ell \\
x+y-z-w=a \\
x-y+z-w=a \\
x-y-z+w=-a
\end{array}\right.
$$

Solving these equations yields $(x, y, z, w)=\left(\frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell+a}{4}, \frac{\ell-3 a}{4}\right)$.
Therefore, $\ell+a \equiv 0(\bmod 4)$.
No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.

Existence

Theorem (K, Pender, Suda, DCC 2021)

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix.

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix.

The construction consists of building patiently nine submatrices

$$
\left[\begin{array}{ccc}
G & F & -F \\
E & A & B \\
-E & B & A
\end{array}\right]
$$

Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix.

The construction consists of building patiently nine submatrices

$$
\left[\begin{array}{ccc}
G & F & -F \\
E & A & B \\
-E & B & A
\end{array}\right]
$$

Summary

For Hadamard matrices

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable. Case of $n=3$ shows the nonexistence of order 36 .

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable. Case of $n=3$ shows the nonexistence of order 36 .
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable. Case of $n=3$ shows the nonexistence of order 36 .
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable. Case of $n=3$ shows the nonexistence of order 36 .
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.
- Question: Is there a balancedly splittable Hadamard matrix of order $16(3)^{2}=144$?

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable. Case of $n=3$ shows the nonexistence of order 36 .
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.
- Question: Is there a balancedly splittable Hadamard matrix of order $16(3)^{2}=144$?
- Question: Is there a balancedly splittable Hadamard matrix of order $16 n^{2}, n$ an odd integer?

For Hadamard matrices

- There is a balancedly splittable Hadamard matrix of order $64 n^{2}$ for any $4 n$ an order of a Hadamard matrix. Case of $n=12=4(3)$ leading to order $576=64(3)^{2}$.
- No Hadamard matrix of order $4 n^{2}, n$ odd, is balancedly splittable. Case of $n=3$ shows the nonexistence of order 36 .
- K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices" missed case of $n=144$.
- Jonathan Jedwab, et al. EJC (2023) "Constructions and Restrictions for Balanced Splittable Hadamard Matrices" also missed case of $n=144$.
- Question: Is there a balancedly splittable Hadamard matrix of order $16(3)^{2}=144$?
- Question: Is there a balancedly splittable Hadamard matrix of order $16 n^{2}, n$ an odd integer?
- The most important Hadamard matrix:

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -
\end{array}\right)
$$

- Auxiliary matrices:

$$
c_{0}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad c_{1}=\left(\begin{array}{cc}
1 & - \\
- & 1
\end{array}\right)
$$

The construction

The construction

S1: Form the block Barker sequence

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .
S3: Form two block circulant matrices

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .
S3: Form two block circulant matrices

- $\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right) \quad \operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$
form a block complementary pair with block autocorrelation 0

The construction

S1: Form the block Barker sequence

$$
\left(c_{0}, c_{1}\right)
$$

is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence

- The sequences

$$
\left(c_{0}, c_{1}, c_{1}\right) \quad\left(c_{0}, c_{1},-c_{1}\right)
$$

form a block Golay pair with sum of autocorrelation 0 .
S3: Form two block circulant matrices

- $\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right) \quad \operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$
form a block complementary pair with block autocorrelation 0
- Form the matrices
- Form the matrices

$\mathrm{A}=\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right), \quad \mathrm{B}=\operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$

- Form the matrices
$\mathrm{A}=\operatorname{bcirc}\left(c_{0} c_{1} c_{1}\right), \quad \mathrm{B}=\operatorname{bcirc}\left(c_{0} c_{1} \bar{c}_{1}\right)$
Then the matrix

$$
\Theta=\left(\begin{array}{ccccccc|cccccc}
A & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & - & 1 \\
1 & 1 & - & 1 & - & 1 & 1 & 1 & - & 1 & 1 & - \\
1 & - & 1 & 1 & 1 & - & - & 1 & 1 & 1 & 1 & - \\
- & A & 1 & 1 & - & 1 & 1 & - & 1 & 1 & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & 1 \\
- & 1 & - & 1 & 1 & 1 & - & 1 & 1 & - & 1 & 1 \\
\hline 1 & 1 & 1 & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & 1 & - & 1 & 1 & - & 1 & 1 & - & 1 & - & 1 \\
- & 1 & 1 & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - \\
1 & - & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & 1 & - & 1 & 1 \\
- & 1 & 1 & - & 1 & 1 & - & 1 & - & 1 & 1 & 1
\end{array}\right)
$$

And

$$
\Theta \Theta^{t}=(2)\left(\begin{array}{llllll|llllll}
6 & \overline{2} & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
\overline{2} & 6 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & \overline{2} & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & \overline{2} & 6 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & \overline{2} & 0 & 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0 & \overline{2} & 6 & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline 2 & 2 & 0 & 0 & 0 & 0 & 6 & \overline{2} & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 & \overline{2} & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 6 & \overline{2} & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & \overline{2} & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 6 & \overline{2} \\
0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & \overline{2} & 6
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|cccccc|ccccccc}
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * & * & * & * & * & * & * & * \\
\hline * & * & * & * & 1 & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & - & 1 \\
* & * & * & * & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & 1 & 1 & - \\
* & * & * & * & 1 & - & 1 & 1 & 1 & - & 1 & 1 & 1 & 1 & 1 & - \\
* & * & * & * & -1 & 1 & 1 & - & 1 & 1 & - & 1 & 1 & - & 1 \\
* & * & * & 1 & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & 1 \\
* * & * & * & - & 1 & - & 1 & 1 & 1 & - & 1 & 1 & - & 1 & 1 \\
\hline * * & * & * & 1 & 1 & 1 & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
* & * & * & 1 & 1 & - & 1 & 1 & - & 1 & 1 & - & 1 & - & 1 \\
* & * & * & * & 1 & 1 & 1 & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - \\
* & * & * & * & 1 & - & 1 & 1 & - & 1 & - & 1 & 1 & 1 & - & 1 \\
* & * & * & * & 1 & - & - & 1 & 1 & 1 & 1 & - & 1 & \frac{1}{1} & 1 \\
* & * & * & * & - & 1 & 1 & - & 1 & 1 & - & 1 & - & 1 & 1 & 1
\end{array}\right)
$$

Balancedly multi-splittable Hadamard matrices

A balanced multi-splitted Hadamard matrix of order 16

A balanced multi-splitted Hadamard matrix of order 16

$$
\left[\begin{array}{c|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & -1 & 1 & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & -1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & -1 & - & - & 1 & 1 & 1 & 1 & - & - & -1 & - \\
1 & - & - & 1 & -1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & -1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{c|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & -1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & -1 & - & - & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & 1 & -1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & 1 & - & 1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & 1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & - & - & 1 & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & -1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

An Orthogonal Array; $\mathrm{OA}(5,4)$ on $\{1,2,3,4\}$

An Orthogonal Array; $\mathrm{OA}(5,4)$ on $\{1,2,3,4\}$ is a $4^{2} \times 5$ matrix on $\{1,2,3,4\}$ alphabets.

An Orthogonal Array; $\mathrm{OA}(5,4)$ on $\{1,2,3,4\}$ is a $4^{2} \times 5$ matrix on $\{1,2,3,4\}$ alphabets.
$\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 3 & 3 & 3 & 3 \\ 1 & 4 & 4 & 4 & 4 \\ 2 & 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 4 & 3 \\ 2 & 3 & 4 & 1 & 2 \\ 2 & 4 & 3 & 2 & 1 \\ 3 & 1 & 3 & 4 & 2 \\ 3 & 3 & 1 & 2 & 4 \\ 3 & 4 & 2 & 1 & 3 \\ 3 & 2 & 4 & 3 & 1 \\ 4 & 1 & 4 & 2 & 3 \\ 4 & 4 & 1 & 3 & 2 \\ 4 & 2 & 3 & 1 & 4 \\ 4 & 3 & 2 & 4 & 1\end{array}\right]$

An Orthogonal Array; $\mathrm{OA}(5,4)$ on $\{1,2,3,4\}$ is a $4^{2} \times 5$ matrix on $\{1,2,3,4\}$ alphabets.

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 2 \\
1 & 3 & 3 & 3 & 3 \\
1 & 4 & 4 & 4 & 4 \\
2 & 1 & 2 & 3 & 4 \\
2 & 2 & 1 & 4 & 3 \\
2 & 3 & 4 & 1 & 2 \\
2 & 4 & 3 & 2 & 1 \\
3 & 1 & 3 & 4 & 2 \\
3 & 3 & 1 & 2 & 4 \\
3 & 4 & 2 & 1 & 3 \\
3 & 2 & 4 & 3 & 1 \\
4 & 1 & 4 & 2 & 3 \\
4 & 4 & 1 & 3 & 2 \\
4 & 2 & 3 & 1 & 4 \\
4 & 3 & 2 & 4 & 1
\end{array}\right]
$$

A normalized Hadamard matrix H_{4} :

$$
\left[\begin{array}{c|ccc}
\mathbf{1} & 1 & 1 & 1 \\
1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc|ccc|ccc|ccc|ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - \\
1 & 1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - \\
1 & 1 & 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 \\
1 & - & 1 & - & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - & 1 \\
1 & - & 1 & - & - & 1 & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\
1 & - & 1 & - & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - \\
1 & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\
1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & - & 1 & - & - & - & 1 \\
1 & 1 & - & - & - & - & 1 & - & 1 & - & 1 & 1 & 1 & 1 & - & - \\
1 & 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & 1 \\
1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & - & 1 & - & 1 & - & - \\
1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & - & 1 & - \\
1 & - & - & - & 1 & - & 1 & - & - & 1 & 1 & 1 & - & - & 1 \\
1 & - & - & 1 & - & - & 1 & - & - & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

Definition

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS,

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

Definition

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS , if there is a block form of $H=\left[\begin{array}{llll}\mathbf{1} & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

Definition

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS , if there is a block form of $H=\left[\begin{array}{llll}\mathbf{1} & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly splitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$,

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

Definition

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS , if there is a block form of $H=\left[\begin{array}{llll}\mathbf{1} & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly splitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$, that is, the inner product of any distinct rows of $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ is $\pm n$.

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

Definition

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS , if there is a block form of $H=\left[\begin{array}{llll}\mathbf{1} & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly splitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$, that is, the inner product of any distinct rows of $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4^{n} for each positive integer n.

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

Definition

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS , if there is a block form of $H=\left[\begin{array}{llll}\mathbf{1} & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly splitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$, that is, the inner product of any distinct rows of $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4^{n} for each positive integer n.
Conjecture: Hadamard matrices of order 4^{n} are the only Hadamard matrices which are BMS.

From an $\mathrm{OA}(9,8)$ and the rows of a normalized Hadamard matrix H 8 from which the first column is removed we get a 64×63 matrix which is splittable in $\binom{9}{4}=126$ different ways providing 64 ETF in \mathbb{R}^{28} meeting the DGS upper bound.

Definition

A Hadamard matrix H of order $4 n^{2}$ is said to be balancedly multi-splittable, BMS , if there is a block form of $H=\left[\begin{array}{llll}\mathbf{1} & H_{1} & \cdots & H_{2 n+1}\end{array}\right]$, where each H_{i} is of order $4 n^{2} \times(2 n-1)$ such that H is balancedly splitable with respect to a submatrix $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ for any n-element subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1,2, \ldots, 2 n+1\}$, that is, the inner product of any distinct rows of $\left[\begin{array}{lll}H_{i_{1}} & \cdots & H_{i_{n}}\end{array}\right]$ is $\pm n$.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4^{n} for each positive integer n.
Conjecture: Hadamard matrices of order 4^{n} are the only Hadamard matrices which are BMS.

Hadamard matrices related to projective planes

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$,

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

What happens if one uses an $\operatorname{OA}(13,12)$ and a $H 12$?

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

What happens if one uses an $\operatorname{OA}(13,12)$ and a $H 12$?
It is not known if there is an $\operatorname{OA}(13,12)$ on 12 symbols,

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

What happens if one uses an $\operatorname{OA}(13,12)$ and a $H 12$?
It is not known if there is an $\operatorname{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

What happens if one uses an $\operatorname{OA}(13,12)$ and a $H 12$? It is not known if there is an $\mathrm{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

What happens if one uses an $\operatorname{OA}(13,12)$ and a $H 12$? It is not known if there is an $\mathrm{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

There is a projective plane of order 12 if and only if there is a BMS Hadamard matrix of order 144,

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

What happens if one uses an $\operatorname{OA}(13,12)$ and a $H 12$?
It is not known if there is an $\mathrm{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

There is a projective plane of order 12 if and only if there is a BMS Hadamard matrix of order 144, i.e. a Hadamard matrix of order 144 in such a way that there are 1716 different choices of $\mathbf{6 6}$ columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound.

We have used an $\mathrm{OA}(5,4)$ on 4 symbols and a $H 4$, an $\mathrm{OA}(9,8)$ on 8 symbols and a H 8 to construct BMS Hadamard matrices.

What happens if one uses an $\operatorname{OA}(13,12)$ and a $H 12$?
It is not known if there is an $\mathrm{OA}(13,12)$ on 12 symbols, OR equivalently a projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective plane of order n is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order n^{2}.

There is a projective plane of order 12 if and only if there is a BMS Hadamard matrix of order 144, i.e. a Hadamard matrix of order 144 in such a way that there are 1716 different choices of $\mathbf{6 6}$ columns generating ETF in \mathbb{R}^{66} meeting the DGS upper bound.

$O A(13,12)$ on 12 alphabets

$O A(13,12)$ on 12 alphabets

An $O A(13,12)$ is a 144×13 matrix on 12 alphabets.

$O A(13,12)$ on 12 alphabets

An $O A(13,12)$ is a 144×13 matrix on 12 alphabets.
Removing the column of all ones from a Hadamard matrix of order 12

$O A(13,12)$ on 12 alphabets

An $O A(13,12)$ is a 144×13 matrix on 12 alphabets.
Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

$O A(13,12)$ on 12 alphabets

An $O A(13,12)$ is a 144×13 matrix on 12 alphabets.
Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

The result is a $144 \times 143(1,-1)$-matrix with inner product of distinct rows -1.

$O A(13,12)$ on 12 alphabets

An $O A(13,12)$ is a 144×13 matrix on 12 alphabets.
Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

The result is a $144 \times 143(1,-1)$-matrix with inner product of distinct rows -1.

By adding a column of ones, a BMS Hadamard matrix (with parameters $(144,66,6))$ is obtained.

$O A(13,12)$ on 12 alphabets

An $O A(13,12)$ is a 144×13 matrix on 12 alphabets.
Removing the column of all ones from a Hadamard matrix of order 12 provide 12 alphabets of length 11 and inner product of distinct alphabets -1.

The result is a $144 \times 143(1,-1)$-matrix with inner product of distinct rows -1.

By adding a column of ones, a BMS Hadamard matrix (with parameters $(144,66,6))$ is obtained.

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,11\}$.

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,11\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}\mathbf{1} & H_{i}\end{array}\right]$.

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,11\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}\mathbf{1} & H_{i}\end{array}\right]$. It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(12,0)$-matrix.

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,11\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}\mathbf{1} & H_{i}\end{array}\right]$.
It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(12,0)$-matrix. Thus some rows of \tilde{H}_{i} coincide.

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,11\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}\mathbf{1} & H_{i}\end{array}\right]$. It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(12,0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=144 I_{12}$, the rank of \tilde{H}_{i} is 12 .

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,11\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}\mathbf{1} & H_{i}\end{array}\right]$.
It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(12,0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=144 I_{12}$, the rank of \tilde{H}_{i} is 12 .
Therefore, there exist exactly 12 distinct rows of \tilde{H}_{i} that correspond to the rows of a Hadamard matrix, say \tilde{K}_{i}, of order 12.

A BMS Hadamard 144 rebuilds an $O A(13,12)$

Assume that H is a balancedly multi-splittable Hadamard matrix of order 144 with respect to the following block form:

$$
H=\left[\begin{array}{llll}
\mathbf{1} & H_{1} & \cdots & H_{13}
\end{array}\right],
$$

where each H_{i} is a $144 \times(11)$ matrix.

Lemma

For any $i, H_{i} H_{i}^{\top}$ is a matrix with entries in $\{-1,11\}$.
For each i, consider the matrix $\tilde{H}_{i}=\left[\begin{array}{ll}\mathbf{1} & H_{i}\end{array}\right]$.
It follows that $\tilde{H}_{i} \tilde{H}_{i}^{\top}$ is a $(12,0)$-matrix. Thus some rows of \tilde{H}_{i} coincide. Since $\tilde{H}_{i}^{\top} \tilde{H}_{i}=144 I_{12}$, the rank of \tilde{H}_{i} is 12 .
Therefore, there exist exactly 12 distinct rows of \tilde{H}_{i} that correspond to the rows of a Hadamard matrix, say \tilde{K}_{i}, of order 12.

Eureka!

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144!

Eureka!

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Eureka!

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144?

Eureka!

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144 ! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144?

An easier Open Question: Is there a balancedly multi-splittable Hadamard matrix of order 144 ?

Eureka!

That explains the difficulty in constructing a balancedly splittable Hadamard matrix of order 144 ! Such a matrix, if it exists and most probably doesn't exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order 144?

An easier Open Question: Is there a balancedly multi-splittable Hadamard matrix of order 144 ?

Key Words

Key Words

- Finite Projective plane.
- Orthogonal Array.
- Hadamard matrix.
- Bush-type Hadamard matrix.
- Balancedly splittable Hadamard matrix.
- Balancedly multi-splittable Hadamard matrix.
- Mutually Orthogonal Latin Square MOLS.
- Block Barker Sequence.
- Block Golay pair.

Key Words

- Finite Projective plane.
- Orthogonal Array.
- Hadamard matrix.
- Bush-type Hadamard matrix.
- Balancedly splittable Hadamard matrix.
- Balancedly multi-splittable Hadamard matrix.
- Mutually Orthogonal Latin Square MOLS.
- Block Barker Sequence.
- Block Golay pair.
- Did I miss any?

Key Words

- Finite Projective plane.
- Orthogonal Array.
- Hadamard matrix.
- Bush-type Hadamard matrix.
- Balancedly splittable Hadamard matrix.
- Balancedly multi-splittable Hadamard matrix.
- Mutually Orthogonal Latin Square MOLS.
- Block Barker Sequence.
- Block Golay pair.
- Did I miss any?
- Yes, I did! Equiangular lines

Thank you

Thank you

