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A finite projective plane of order2

7 points, 7 lines,

each point on 3 lines, each line 3 points,

any two distinct lines meet at exactly one point,

any two distinct points lie on exactly one line.
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Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix D = [dij ] obtained
by Indexing the rows with the points and columns with lines and assigning

dij =

{
1 if point i is on line j

0 otherwise

Example

For n = 2 one incidence matrix is

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
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Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.

The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column,

and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Finite projective plane of order n

A (finite) projective plane of order n has

n2 + n + 1 points

n2 + n + 1 lines

every line contains n + 1 points

every point is on n + 1 lines

any two distinct lines meet at exactly one point

any two distinct points lie on exactly one line

Example

A p-plane of order 10 must have 102 + 10 + 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be
one.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 4 / 52



Existence of a projective plane of order 10

Wow! 111× 111 matrix!
That is too large!
So, it doesn’t exist!

Clement Lam, a computer science professor at Concordia, and his
coauthors completed the last piece of search after about 2000 hours of
computations on a CRAY-1A supercomputer in 1988. The complexity at
the time involved over 1014 cases to be checked.

A New York Times headline in December 1988 read:

Is a math proof a proof if no one can check it?
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Notes

Existence: There is a projective plane of order q for any prime
power q.

Nonexistence: There is no projective plane of order n,

n ≡ 1, 2 (mod 4),

and n not a sum of two integer squares. None of order

6, 14, 21, 22, 30, · · ·

Open Problem: The first open order is order 12. That is the
existence of a (0, 1)-matrix of order 157 with 13 one in each row and
column and inner product of distinct rows one.
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Bush-type Hadamard matrices
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Example: A Bush-type Hadamard matrix of order 16



1 1 1 1 1 1 − − 1 − 1 − 1 − − 1
1 1 1 1 1 1 − − − 1 − 1 − 1 1 −
1 1 1 1 − − 1 1 1 − 1 − − 1 1 −
1 1 1 1 − − 1 1 − 1 − 1 1 − − 1
1 1 − − 1 1 1 1 1 − − 1 1 − 1 −
1 1 − − 1 1 1 1 − 1 1 − − 1 − 1
− − 1 1 1 1 1 1 − 1 1 − 1 − 1 −
− − 1 1 1 1 1 1 1 − − 1 − 1 − 1
1 − 1 − 1 − − 1 1 1 1 1 1 1 − −
− 1 − 1 − 1 1 − 1 1 1 1 1 1 − −
1 − 1 − − 1 1 − 1 1 1 1 − − 1 1
− 1 − 1 1 − − 1 1 1 1 1 − − 1 1
1 − − 1 1 − 1 − 1 1 − − 1 1 1 1
− 1 1 − − 1 − 1 1 1 − − 1 1 1 1
− 1 1 − 1 − 1 − − − 1 1 1 1 1 1
1 − − 1 − 1 − 1 − − 1 1 1 1 1 1
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices

that was later labeled as
Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix H = [Hij ] of order 4n
2

with block size 2n, Hii = J2n and HijJ2n = J2nHij = 0, i ̸= j , 1 ≤ i ≤ 2n,
1 ≤ j ≤ 2n, where J2n is the 2n by 2n matrix of all entries 1.

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10, then there is a symmetric
Bush-type Hadamard matrix of order 100.
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Notes

Bussemaker, Haemers, Spence [2000]: There is no strongly regular
graph with parameters (36, 15, 6, 6) and chromatic number six, or
equivalently, there is no symmetric Bush-type Hadamard matrix of
order 36.

There are over 40,000 inequivalent Bush-type Hadamard matrices of
order 100 and none are symmetric.

A proof of nonexistence of a symmetric Bush-type Hadamard matrix
of order 100 would imply the nonexistence of 4 MOLS of order 10 and
apriori a projection plane of order 10.

There are many known symmetric Bush-type Hadamard matrix of
order 144, and thus a new approach (or link) is needed for the
problems related to the projective planes of order 16n2,
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Balancedly Splittable Hadamard matrices
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Here is a balancedly splitted Hadamard matrix of order 4:

− = −1 and
ā = −a.

H =

[
H1

H2

]
=


1 1 1 1

1 − 1 −
1 1 − −
1 − − 1



Ht
1H1 =


1
1
1
1

 [
1 1 1 1

]
=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



Ht
2H2 =


3 − − −
− 3 − −
− − 3 −
− − − 3


Every normalized Hadamard matrix is balancedly splittable in this way.
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Here is a twin balancedly splitted Hadamard matrix of order 16:

[
H0
H1
H2

]
=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − − − − 1 1 1 1 − − − −
1 1 1 1 1 1 1 1 − − − − − − − −
1 1 1 1 − − − − − − − − 1 1 1 1
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 − − 1 1 − − 1 1 − − 1 1 − − 1
1 1 − − − − 1 1 1 1 − − − − 1 1
1 − 1 − 1 − 1 − − 1 − 1 − 1 − 1
1 − − 1 − 1 1 − − 1 1 − 1 − − 1
1 − 1 − − 1 − 1 1 − 1 − − 1 − 1
1 − − 1 − 1 1 − 1 − − 1 − 1 1 −
1 1 − − 1 1 − − − − 1 1 − − 1 1
1 − − 1 1 − − 1 − 1 1 − − 1 1 −
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 −
1 1 − − − − 1 1 − − 1 1 1 1 − −
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H0 =

1111 1 1 1 1 1 1 1 1 1 1 1 1
1111−−−− 1 1 1 1 −−−−
1111 1 1 1 1 −−−−−−−−
1111−−−−−−−− 1 1 1 1



H1 =


1− 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 1 −− 1 1 −− 1 1 −− 1 1 −−
1−− 1 1 −− 1 1 −− 1 1 −− 1
1 1 −−−− 1 1 1 1 −−−− 1 1
1− 1 − 1 − 1 −− 1 − 1 − 1 − 1
1−− 1 − 1 1 −− 1 1 − 1 −− 1



H2 =


1− 1 −− 1 − 1 1 − 1 −− 1 − 1
1−− 1 − 1 1 − 1 −− 1 − 1 1 −
1 1 −− 1 1 −−−− 1 1 −− 1 1
1−− 1 1 −− 1 − 1 1 −− 1 1 −
1− 1 −− 1 − 1 − 1 − 1 1 − 1 −
1 1 −−−− 1 1 −− 1 1 1 1 −−
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Two sets of 16 Equiangular Lines in R6.

[
H1
H2

]
=



1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 − − 1 1 − − 1 1 − − 1 1 − − 1
1 1 − − − − 1 1 1 1 − − − − 1 1
1 − 1 − 1 − 1 − − 1 − 1 − 1 − 1
1 − − 1 − 1 1 − − 1 1 − 1 − − 1
1 − 1 − − 1 − 1 1 − 1 − − 1 − 1
1 − − 1 − 1 1 − 1 − − 1 − 1 1 −
1 1 − − 1 1 − − − − 1 1 − − 1 1
1 − − 1 1 − − 1 − 1 1 − − 1 1 −
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 −
1 1 − − − − 1 1 − − 1 1 1 1 − −
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Ht
1H1 =



6 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 22 2̄ 2̄ 2 2̄ 2̄ 2
2̄ 6 2̄ 2̄ 2̄ 2 2̄ 222 2̄ 2̄ 2̄ 22 2̄
2̄ 2̄ 6 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 22 2̄ 22 2̄
2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2 2̄ 2̄ 222 2̄ 2̄ 2
2 2̄ 2 2̄ 6 2̄ 2̄ 2̄ 2 2̄ 2̄ 222 2̄ 2̄
2̄ 2 2̄ 2 2̄ 6 2̄ 2̄ 2̄ 22 2̄ 22 2̄ 2̄
2 2̄ 2 2̄ 2̄ 2̄ 6 2̄ 2̄ 22 2̄ 2̄ 2̄ 22
2̄ 2 2̄ 2 2̄ 2̄ 2̄ 62 2̄ 2̄ 2 2̄ 2̄ 22
22 2̄ 2̄ 2 2̄ 2̄ 26 2̄ 2̄ 2̄ 2 2̄ 2 2̄
22 2̄ 2̄ 2̄ 22 2̄ 2̄ 6 2̄ 2̄ 2̄ 2 2̄ 2
2̄ 2̄ 22 2̄ 22 2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2 2̄
2̄ 2̄ 222 2̄ 2̄ 2 2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2
2 2̄ 2̄ 222 2̄ 2̄ 2 2̄ 2 2̄ 6 2̄ 2̄ 2̄
2̄ 22 2̄ 22 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 6 2̄ 2̄
2̄ 22 2̄ 2̄ 2̄ 222 2̄2 2̄ 2̄ 2̄ 6 2̄
2 2̄ 2̄ 2 2̄ 2̄ 22 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 6



Ht
2H2 =



6 2̄ 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 22 2̄ 22 2̄
2̄ 6 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 222 2̄ 2̄ 2
2̄ 2̄ 6 2̄ 2̄ 2 2̄ 222 2̄ 2̄ 2 2̄ 2̄ 2
2̄ 2̄ 2̄ 62 2̄ 2 2̄ 22 2̄ 2̄ 2̄ 22 2̄
2̄ 2 2̄ 26 2̄ 2̄ 2̄ 2̄ 22 2̄ 2̄ 2̄ 22
2 2̄2 2̄ 2̄ 6 2̄ 2̄ 2 2̄ 2̄ 2 2̄ 2̄ 22
2̄ 2 2̄ 2 2̄ 2̄ 6 2̄ 2 2̄ 2̄ 222 2̄ 2̄
2 2̄ 2 2̄ 2̄ 2̄ 2̄ 6 2̄ 22 2̄ 22 2̄ 2̄
2̄ 2̄ 22 2̄ 22 2̄6 2̄ 2̄ 2̄ 2̄ 2 2̄ 2
2̄ 2̄ 222 2̄ 2̄ 2 2̄ 6 2̄ 2̄ 2 2̄ 2 2̄
22 2̄ 2̄ 2 2̄ 2̄ 2 2̄ 2̄ 6 2̄ 2̄ 2 2̄ 2
22 2̄ 2̄ 2̄ 22 2̄ 2̄ 2̄ 2̄ 62 2̄ 2 2̄
2̄ 22 2̄ 2̄ 2̄ 22 2̄ 2 2̄ 26 2̄ 2̄ 2̄
2 2̄ 2̄ 2 2̄ 2̄ 222 2̄2 2̄ 2̄ 6 2̄ 2̄
2 2̄ 2̄ 222 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 6 2̄
2̄ 22 2̄ 22 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 2̄ 6


The corresponding angle between lines is arccos(13) for both sets of lines.
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22 2̄ 2̄ 2 2̄ 2̄ 26 2̄ 2̄ 2̄ 2 2̄ 2 2̄
22 2̄ 2̄ 2̄ 22 2̄ 2̄ 6 2̄ 2̄ 2̄ 2 2̄ 2
2̄ 2̄ 22 2̄ 22 2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2 2̄
2̄ 2̄ 222 2̄ 2̄ 2 2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2
2 2̄ 2̄ 222 2̄ 2̄ 2 2̄ 2 2̄ 6 2̄ 2̄ 2̄
2̄ 22 2̄ 22 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 6 2̄ 2̄
2̄ 22 2̄ 2̄ 2̄ 222 2̄2 2̄ 2̄ 2̄ 6 2̄
2 2̄ 2̄ 2 2̄ 2̄ 22 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 6



Ht
2H2 =



6 2̄ 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 22 2̄ 22 2̄
2̄ 6 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 222 2̄ 2̄ 2
2̄ 2̄ 6 2̄ 2̄ 2 2̄ 222 2̄ 2̄ 2 2̄ 2̄ 2
2̄ 2̄ 2̄ 62 2̄ 2 2̄ 22 2̄ 2̄ 2̄ 22 2̄
2̄ 2 2̄ 26 2̄ 2̄ 2̄ 2̄ 22 2̄ 2̄ 2̄ 22
2 2̄2 2̄ 2̄ 6 2̄ 2̄ 2 2̄ 2̄ 2 2̄ 2̄ 22
2̄ 2 2̄ 2 2̄ 2̄ 6 2̄ 2 2̄ 2̄ 222 2̄ 2̄
2 2̄ 2 2̄ 2̄ 2̄ 2̄ 6 2̄ 22 2̄ 22 2̄ 2̄
2̄ 2̄ 22 2̄ 22 2̄6 2̄ 2̄ 2̄ 2̄ 2 2̄ 2
2̄ 2̄ 222 2̄ 2̄ 2 2̄ 6 2̄ 2̄ 2 2̄ 2 2̄
22 2̄ 2̄ 2 2̄ 2̄ 2 2̄ 2̄ 6 2̄ 2̄ 2 2̄ 2
22 2̄ 2̄ 2̄ 22 2̄ 2̄ 2̄ 2̄ 62 2̄ 2 2̄
2̄ 22 2̄ 2̄ 2̄ 22 2̄ 2 2̄ 26 2̄ 2̄ 2̄
2 2̄ 2̄ 2 2̄ 2̄ 222 2̄2 2̄ 2̄ 6 2̄ 2̄
2 2̄ 2̄ 222 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 6 2̄
2̄ 22 2̄ 22 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 2̄ 6
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Ht
1H1 =



6 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 22 2̄ 2̄ 2 2̄ 2̄ 2
2̄ 6 2̄ 2̄ 2̄ 2 2̄ 222 2̄ 2̄ 2̄ 22 2̄
2̄ 2̄ 6 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 22 2̄ 22 2̄
2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2 2̄ 2̄ 222 2̄ 2̄ 2
2 2̄ 2 2̄ 6 2̄ 2̄ 2̄ 2 2̄ 2̄ 222 2̄ 2̄
2̄ 2 2̄ 2 2̄ 6 2̄ 2̄ 2̄ 22 2̄ 22 2̄ 2̄
2 2̄ 2 2̄ 2̄ 2̄ 6 2̄ 2̄ 22 2̄ 2̄ 2̄ 22
2̄ 2 2̄ 2 2̄ 2̄ 2̄ 62 2̄ 2̄ 2 2̄ 2̄ 22
22 2̄ 2̄ 2 2̄ 2̄ 26 2̄ 2̄ 2̄ 2 2̄ 2 2̄
22 2̄ 2̄ 2̄ 22 2̄ 2̄ 6 2̄ 2̄ 2̄ 2 2̄ 2
2̄ 2̄ 22 2̄ 22 2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2 2̄
2̄ 2̄ 222 2̄ 2̄ 2 2̄ 2̄ 2̄ 6 2̄ 2 2̄ 2
2 2̄ 2̄ 222 2̄ 2̄ 2 2̄ 2 2̄ 6 2̄ 2̄ 2̄
2̄ 22 2̄ 22 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 6 2̄ 2̄
2̄ 22 2̄ 2̄ 2̄ 222 2̄2 2̄ 2̄ 2̄ 6 2̄
2 2̄ 2̄ 2 2̄ 2̄ 22 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 6



Ht
2H2 =
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2̄ 6 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 222 2̄ 2̄ 2
2̄ 2̄ 6 2̄ 2̄ 2 2̄ 222 2̄ 2̄ 2 2̄ 2̄ 2
2̄ 2̄ 2̄ 62 2̄ 2 2̄ 22 2̄ 2̄ 2̄ 22 2̄
2̄ 2 2̄ 26 2̄ 2̄ 2̄ 2̄ 22 2̄ 2̄ 2̄ 22
2 2̄2 2̄ 2̄ 6 2̄ 2̄ 2 2̄ 2̄ 2 2̄ 2̄ 22
2̄ 2 2̄ 2 2̄ 2̄ 6 2̄ 2 2̄ 2̄ 222 2̄ 2̄
2 2̄ 2 2̄ 2̄ 2̄ 2̄ 6 2̄ 22 2̄ 22 2̄ 2̄
2̄ 2̄ 22 2̄ 22 2̄6 2̄ 2̄ 2̄ 2̄ 2 2̄ 2
2̄ 2̄ 222 2̄ 2̄ 2 2̄ 6 2̄ 2̄ 2 2̄ 2 2̄
22 2̄ 2̄ 2 2̄ 2̄ 2 2̄ 2̄ 6 2̄ 2̄ 2 2̄ 2
22 2̄ 2̄ 2̄ 22 2̄ 2̄ 2̄ 2̄ 62 2̄ 2 2̄
2̄ 22 2̄ 2̄ 2̄ 22 2̄ 2 2̄ 26 2̄ 2̄ 2̄
2 2̄ 2̄ 2 2̄ 2̄ 222 2̄2 2̄ 2̄ 6 2̄ 2̄
2 2̄ 2̄ 222 2̄ 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 6 2̄
2̄ 22 2̄ 22 2̄ 2̄ 2 2̄ 2 2̄ 2̄ 2̄ 2̄ 6
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Sixteen Equiangular Lines in R10.

[
H0
H1

]
=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − − − − 1 1 1 1 − − − −
1 1 1 1 1 1 1 1 − − − − − − − −
1 1 1 1 − − − − − − − − 1 1 1 1
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 − − 1 1 − − 1 1 − − 1 1 − − 1
1 1 − − − − 1 1 1 1 − − − − 1 1
1 − 1 − 1 − 1 − − 1 − 1 − 1 − 1
1 − − 1 − 1 1 − − 1 1 − 1 − − 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − − − − 1 1 1 1 − − − −
1 1 1 1 1 1 1 1 − − − − − − − −
1 1 1 1 − − − − − − − − 1 1 1 1
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 −
1 1 − − 1 1 − − 1 1 − − 1 1 − −
1 − − 1 1 − − 1 1 − − 1 1 − − 1
1 1 − − − − 1 1 1 1 − − − − 1 1
1 − 1 − 1 − 1 − − 1 − 1 − 1 − 1
1 − − 1 − 1 1 − − 1 1 − 1 − − 1
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H t
0H0 + H t

1H1 =



10 2 2 2 2 2̄ 2 2̄ 2 2 2̄ 2̄ 2 2̄ 2̄ 2
2 10 2 2 2̄ 2 2̄ 2 2 2 2̄ 2̄ 2̄ 2 2 2̄
2 2 10 2 2 2̄ 2 2̄ 2̄ 2̄ 2 2 2̄ 2 2 2̄
2 2 2 10 2̄ 2 2̄ 2 2̄ 2̄ 2 2 2 2̄ 2̄ 2
2 2̄ 2 2̄ 10 2 2 2 2 2̄ 2̄ 2 2 2 2̄ 2̄
2̄ 2 2̄ 2 2 10 2 2 2̄ 2 2 2̄ 2 2 2̄ 2̄
2 2̄ 2 2̄ 2 2 10 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2
2̄ 2 2̄ 2 2 2 2 10 2 2̄ 2̄ 2 2̄ 2̄ 2 2
2 2 2̄ 2̄ 2 2̄ 2̄ 2 10 2 2 2 2 2̄ 2 2̄
2 2 2̄ 2̄ 2̄ 2 2 2̄ 2 10 2 2 2̄ 2 2̄ 2
2̄ 2̄ 2 2 2̄ 2 2 2̄ 2 2 10 2 2 2̄ 2 2̄
2̄ 2̄ 2 2 2 2̄ 2̄ 2 2 2 2 10 2̄ 2 2̄ 2
2 2̄ 2̄ 2 2 2 2̄ 2̄ 2 2̄ 2 2̄ 10 2 2 2
2̄ 2 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2̄ 2 2 10 2 2
2̄ 2 2 2̄ 2̄ 2̄ 2 2 2 2̄ 2 2̄ 2 2 10 2
2 2̄ 2̄ 2 2̄ 2̄ 2 2 2̄ 2 2̄ 2 2 2 2 10


The corresponding angle between lines is arccos( 1

5
).
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H t
0H0 + H t

1H1 =



10 2 2 2 2 2̄ 2 2̄ 2 2 2̄ 2̄ 2 2̄ 2̄ 2
2 10 2 2 2̄ 2 2̄ 2 2 2 2̄ 2̄ 2̄ 2 2 2̄
2 2 10 2 2 2̄ 2 2̄ 2̄ 2̄ 2 2 2̄ 2 2 2̄
2 2 2 10 2̄ 2 2̄ 2 2̄ 2̄ 2 2 2 2̄ 2̄ 2
2 2̄ 2 2̄ 10 2 2 2 2 2̄ 2̄ 2 2 2 2̄ 2̄
2̄ 2 2̄ 2 2 10 2 2 2̄ 2 2 2̄ 2 2 2̄ 2̄
2 2̄ 2 2̄ 2 2 10 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2
2̄ 2 2̄ 2 2 2 2 10 2 2̄ 2̄ 2 2̄ 2̄ 2 2
2 2 2̄ 2̄ 2 2̄ 2̄ 2 10 2 2 2 2 2̄ 2 2̄
2 2 2̄ 2̄ 2̄ 2 2 2̄ 2 10 2 2 2̄ 2 2̄ 2
2̄ 2̄ 2 2 2̄ 2 2 2̄ 2 2 10 2 2 2̄ 2 2̄
2̄ 2̄ 2 2 2 2̄ 2̄ 2 2 2 2 10 2̄ 2 2̄ 2
2 2̄ 2̄ 2 2 2 2̄ 2̄ 2 2̄ 2 2̄ 10 2 2 2
2̄ 2 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2̄ 2 2 10 2 2
2̄ 2 2 2̄ 2̄ 2̄ 2 2 2 2̄ 2 2̄ 2 2 10 2
2 2̄ 2̄ 2 2̄ 2̄ 2 2 2̄ 2 2̄ 2 2 2 2 10


The corresponding angle between lines is arccos( 1

5
).
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Sixteen Equiangular Lines in R10.

[
H0
H2

]
=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − − − − 1 1 1 1 − − − −
1 1 1 1 1 1 1 1 − − − − − − − −
1 1 1 1 − − − − − − − − 1 1 1 1
1 − 1 − − 1 − 1 1 − 1 − − 1 − 1
1 − − 1 − 1 1 − 1 − − 1 − 1 1 −
1 1 − − 1 1 − − − − 1 1 − − 1 1
1 − − 1 1 − − 1 − 1 1 − − 1 1 −
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 −
1 1 − − − − 1 1 − − 1 1 1 1 − −
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Sixteen Equiangular Lines in R10.

[
H0
H2

]
=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − − − − 1 1 1 1 − − − −
1 1 1 1 1 1 1 1 − − − − − − − −
1 1 1 1 − − − − − − − − 1 1 1 1
1 − 1 − − 1 − 1 1 − 1 − − 1 − 1
1 − − 1 − 1 1 − 1 − − 1 − 1 1 −
1 1 − − 1 1 − − − − 1 1 − − 1 1
1 − − 1 1 − − 1 − 1 1 − − 1 1 −
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 −
1 1 − − − − 1 1 − − 1 1 1 1 − −
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H t
0H0 + H t

2H2 =



10 2 2 2 2̄ 2 2̄ 2 2̄ 2̄ 2 2 2̄ 2 2 2̄
2 10 2 2 2 2̄ 2 2̄ 2̄ 2̄ 2 2 2 2̄ 2̄ 2
2 2 10 2 2̄ 2 2̄ 2 2 2 2̄ 2̄ 2 2̄ 2̄ 2
2 2 2 10 2 2̄ 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2 2̄
2̄ 2 2̄ 2 10 2 2 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2
2 2̄ 2 2̄ 2 10 2 2 2 2̄ 2̄ 2 2̄ 2̄ 2 2
2̄ 2 2̄ 2 2 2 10 2 2 2̄ 2̄ 2 2 2 2̄ 2̄
2 2̄ 2 2̄ 2 2 2 10 2̄ 2 2 2̄ 2 2 2̄ 2̄
2̄ 2̄ 2 2 2̄ 2 2 2̄ 10 2 2 2 2̄ 2 2̄ 2
2̄ 2̄ 2 2 2 2̄ 2̄ 2 2 10 2 2 2 2̄ 2 2̄
2 2 2̄ 2̄ 2 2̄ 2̄ 2 2 2 10 2 2̄ 2 2̄ 2
2 2 2̄ 2̄ 2̄ 2 2 2̄ 2 2 2 10 2 2̄ 2 2̄
2̄ 2 2 2̄ 2̄ 2̄ 2 2 2̄ 2 2̄ 2 10 2 2 2
2 2̄ 2̄ 2 2̄ 2̄ 2 2 2 2̄ 2 2̄ 2 10 2 2
2 2̄ 2̄ 2 2 2 2̄ 2̄ 2̄ 2 2̄ 2 2 2 10 2
2̄ 2 2 2̄ 2 2 2̄ 2̄ 2 2̄ 2 2̄ 2 2 2 10


The corresponding angle between lines is arccos( 1

5
).
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H t
0H0 + H t

2H2 =



10 2 2 2 2̄ 2 2̄ 2 2̄ 2̄ 2 2 2̄ 2 2 2̄
2 10 2 2 2 2̄ 2 2̄ 2̄ 2̄ 2 2 2 2̄ 2̄ 2
2 2 10 2 2̄ 2 2̄ 2 2 2 2̄ 2̄ 2 2̄ 2̄ 2
2 2 2 10 2 2̄ 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2 2̄
2̄ 2 2̄ 2 10 2 2 2 2̄ 2 2 2̄ 2̄ 2̄ 2 2
2 2̄ 2 2̄ 2 10 2 2 2 2̄ 2̄ 2 2̄ 2̄ 2 2
2̄ 2 2̄ 2 2 2 10 2 2 2̄ 2̄ 2 2 2 2̄ 2̄
2 2̄ 2 2̄ 2 2 2 10 2̄ 2 2 2̄ 2 2 2̄ 2̄
2̄ 2̄ 2 2 2̄ 2 2 2̄ 10 2 2 2 2̄ 2 2̄ 2
2̄ 2̄ 2 2 2 2̄ 2̄ 2 2 10 2 2 2 2̄ 2 2̄
2 2 2̄ 2̄ 2 2̄ 2̄ 2 2 2 10 2 2̄ 2 2̄ 2
2 2 2̄ 2̄ 2̄ 2 2 2̄ 2 2 2 10 2 2̄ 2 2̄
2̄ 2 2 2̄ 2̄ 2̄ 2 2 2̄ 2 2̄ 2 10 2 2 2
2 2̄ 2̄ 2 2̄ 2̄ 2 2 2 2̄ 2 2̄ 2 10 2 2
2 2̄ 2̄ 2 2 2 2̄ 2̄ 2̄ 2 2̄ 2 2 2 10 2
2̄ 2 2 2̄ 2 2 2̄ 2̄ 2 2̄ 2 2̄ 2 2 2 10


The corresponding angle between lines is arccos( 1

5
).
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Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its
rows it can be transformed to

H =

[
H1

H2

]
,

such that Ht
1H1 has at most two distinct off-diagonal entries.

Let H =

[
H1

H2

]
be a balancedly splittable Hadamard matrix of order n,

where H1 is an ℓ× n matrix. Then, there exist a positive integer a and a
(0,−1, 1)-matrix S such that

Ht
1H1 = ℓIn + aS ,

and in this case (ℓ, a) = (n±
√
n

2 ,
√
n
2 ), and the notation (n, ℓ, a) is used for

ℓ = n−
√
n

2 throughout.
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An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let X ⊂ Rm be a set of unit vectors such that |⟨v ,w⟩| = α for all
v ,w ∈ X , v ̸= w . If m < 1

α2 , then

|X | ≤ m(1− α2)

1−mα2
.

The 16 Equiangular Lines in R6 meet the DGS-upper bound with
α = 1

3

The 16 Equiangular Lines in R10 meet the DGS-upper bound with
α = 1

5 .
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Nonexistence
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There is no balancedly splittable Hadamard matrix with the parameters
(n, ℓ, a), ℓ+ a ̸≡ 0 (mod 4).

Let x , y , x ,w be non-negative integers such that

the first column = (+ · · ·+ + · · ·+ + · · ·+ + · · ·+)⊤,
the i-th column = (+ · · ·+ + · · ·+ − · · ·− − · · · −)⊤,
the j-th column = (+ · · ·+︸ ︷︷ ︸

x rows

− · · ·−︸ ︷︷ ︸
y rows

+ · · ·+︸ ︷︷ ︸
z rows

− · · ·−︸ ︷︷ ︸
w rows

)⊤.

Then it follows that 
x + y + z + w = ℓ,

x + y − z − w = a,

x − y + z − w = a,

x − y − z + w = −a.

Solving these equations yields (x , y , z ,w) = ( ℓ+a
4 , ℓ+a

4 , ℓ+a
4 , ℓ−3a

4 ).
Therefore, ℓ+ a ≡ 0 (mod 4).
No Hadamard matrix of order 4n2, n odd, is balancedly splittable.
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There is no balancedly splittable Hadamard matrix with the parameters
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Existence
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Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order 64n2 for any 4n
an order of a Hadamard matrix.

The construction consists of building patiently nine submatrices G F −F
E A B
−E B A

 .
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Summary
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For Hadamard matrices

There is a balancedly splittable Hadamard matrix of order 64n2 for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)2.

No Hadamard matrix of order 4n2, n odd, is balancedly
splittable. Case of n = 3 shows the nonexistence of order 36.

K, Suda, D.M. (2019) “Balancedly splittable Hadamard matrices”
missed case of n = 144.

Jonathan Jedwab, et al. EJC (2023) “Constructions and Restrictions
for Balanced Splittable Hadamard Matrices” also missed case of
n = 144.

Question: Is there a balancedly splittable Hadamard matrix of order
16(3)2 = 144?

Question: Is there a balancedly splittable Hadamard matrix of order
16n2, n an odd integer?
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The most important Hadamard matrix:(
1 1
1 −

)
Auxiliary matrices:

c0 =

(
1 1
1 1

)
, c1 =

(
1 −
− 1

)
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The construction

S1: Form the block Barker sequence

(c0, c1)

is a block Barker sequence with block autocorrelation 0

S2: Form the block Golay sequence

The sequences
(c0, c1, c1) (c0, c1,−c1)

form a block Golay pair with sum of autocorrelation 0.

S3: Form two block circulant matrices

bcirc(c0c1c1) bcirc(c0c1c̄1)
form a block complementary pair with block autocorrelation 0
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Form the matrices

A=bcirc(c0c1c1), B=bcirc(c0c1c̄1)

Then the matrix

Θ =

(
A B
B A

)
=



1 1 1 − 1 − 1 1 1 − − 1
1 1 − 1 − 1 1 1 − 1 1 −
1 − 1 1 1 − − 1 1 1 1 −
− 1 1 1 − 1 1 − 1 1 − 1
1 − 1 − 1 1 1 − − 1 1 1
− 1 − 1 1 1 − 1 1 − 1 1
1 1 1 − − 1 1 1 1 − 1 −
1 1 − 1 1 − 1 1 − 1 − 1
− 1 1 1 1 − 1 − 1 1 1 −
1 − 1 1 − 1 − 1 1 1 − 1
1 − − 1 1 1 1 − 1 − 1 1
− 1 1 − 1 1 − 1 − 1 1 1
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And

ΘΘt = (2)



6 2̄ 0 0 0 0 2 2 0 0 0 0
2̄ 6 0 0 0 0 2 2 0 0 0 0
0 0 6 2̄ 0 0 0 0 2 2 0 0
0 0 2̄ 6 0 0 0 0 2 2 0 0
0 0 0 0 6 2̄ 0 0 0 0 2 2
0 0 0 0 2̄ 6 0 0 0 0 2 2
2 2 0 0 0 0 6 2̄ 0 0 0 0
2 2 0 0 0 0 2̄ 6 0 0 0 0
0 0 2 2 0 0 0 0 6 2̄ 0 0
0 0 2 2 0 0 0 0 2̄ 6 0 0
0 0 0 0 2 2 0 0 0 0 6 2̄
0 0 0 0 2 2 0 0 0 0 2̄ 6
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 1 1 − 1 − 1 1 1 − − 1
∗ ∗ ∗ ∗ 1 1 − 1 − 1 1 1 − 1 1 −
∗ ∗ ∗ ∗ 1 − 1 1 1 − − 1 1 1 1 −
∗ ∗ ∗ ∗ − 1 1 1 − 1 1 − 1 1 − 1
∗ ∗ ∗ ∗ 1 − 1 − 1 1 1 − − 1 1 1
∗ ∗ ∗ ∗ − 1 − 1 1 1 − 1 1 − 1 1
∗ ∗ ∗ ∗ 1 1 1 − − 1 1 1 1 − 1 −
∗ ∗ ∗ ∗ 1 1 − 1 1 − 1 1 − 1 − 1
∗ ∗ ∗ ∗ − 1 1 1 1 − 1 − 1 1 1 −
∗ ∗ ∗ ∗ 1 − 1 1 − 1 − 1 1 1 − 1
∗ ∗ ∗ ∗ 1 − − 1 1 1 1 − 1 − 1 1
∗ ∗ ∗ ∗ − 1 1 − 1 1 − 1 − 1 1 1
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G F −F

E

1 1 1 − 1 −
1 1 − 1 − 1
1 − 1 1 1 −
− 1 1 1 − 1
1 − 1 − 1 1
− 1 − 1 1 1

1 1 1 −− 1
1 1 − 1 1 −
− 1 1 1 1 −
1 − 1 1 − 1
1 −− 1 1 1
− 1 1 − 1 1

−E

1 1 1 −− 1
1 1 − 1 1 −
− 1 1 1 1 −
1 − 1 1 − 1
1 −− 1 1 1
− 1 1 − 1 1

1 1 1 − 1 −
1 1 − 1 − 1
1 − 1 1 1 −
− 1 1 1 − 1
1 − 1 − 1 1
− 1 − 1 1 1
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1 1 1 1 1 1 1 1 1 1 −−−−−−
1 1 1 1 −− 1 1 −− 1 1 −− 1 1
1 1 1 1 1 1 −−−−−− 1 1 1 1
1 1 1 1 −−−− 1 1 1 1 1 1 −−
1 − 1 − 1 1 1 − 1 − 1 1 1 −− 1
1 − 1 − 1 1 − 1 − 1 1 1 − 1 1 −
1 1 −− 1 − 1 1 1 −− 1 1 1 1 −
1 1 −−− 1 1 1 − 1 1 − 1 1 − 1
1 −− 1 1 − 1 − 1 1 1 −− 1 1 1
1 −− 1 − 1 − 1 1 1 − 1 1 − 1 1
− 1 − 1 1 1 1 −− 1 1 1 1 − 1 −
− 1 − 1 1 1 − 1 1 − 1 1 − 1 − 1
−− 1 1 − 1 1 1 1 − 1 − 1 1 1 −
−− 1 1 1 − 1 1 − 1 − 1 1 1 − 1
− 1 1 − 1 −− 1 1 1 1 − 1 − 1 1
− 1 1 −− 1 1 − 1 1 − 1 − 1 1 1
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Balancedly multi-splittable Hadamard matrices
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A balanced multi-splitted Hadamard matrix of order 16



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − 1 − − 1 − − 1 − − 1 −
1 1 1 1 1 −− 1 −− 1 −− 1 −−
1 1 1 1 −− 1 −− 1 −− 1 −− 1
1− 1 − 1 1 1 − 1 − 1 −− −− 1
1− 1 − − 1 − 1 1 1 −− 1 1 −−
1− 1 − 1 −− −− 1 1 1 1 − 1 −
1− 1 − −− 1 1 −− − 1 − 1 1 1
1 1 −− 1 1 1 1 −− −− 1 − 1 −
1 1 −− 1 −− 1 1 1 − 1 − −− 1
1 1 −− −− 1 − 1 − 1 1 1 1 −−
1 1 −− − 1 − −− 1 1 −− 1 1 1
1−− 1 1 1 1 −− 1 − 1 − 1 −−
1−− 1 −− 1 1 1 1 1 −− − 1 −
1−− 1 − 1 − 1 −− 1 1 1 −− 1
1−− 1 1 −− − 1 − −− 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − 1 −− 1 −− 1 −− 1 −
1 1 1 1 1 −− 1 −− 1 −− 1 −−
1 1 1 1 −− 1 −− 1 −− 1 −− 1
1− 1 − 1 1 1 − 1 − 1 −−−− 1
1− 1 −− 1 − 1 1 1 −− 1 1 −−
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1− 1 −−− 1 1 −−− 1 − 1 1 1
1 1 −− 1 1 1 1 −−−− 1 − 1 −
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − 1 − − 1 − − 1 − − 1 −
1 1 1 1 1 −− 1 −− 1 −− 1 −−
1 1 1 1 −− 1 −− 1 −− 1 −− 1
1− 1 − 1 1 1 − 1 − 1 −− −− 1
1− 1 − − 1 − 1 1 1 −− 1 1 −−
1− 1 − 1 −− −− 1 1 1 1 − 1 −
1− 1 − −− 1 1 −− − 1 − 1 1 1
1 1 −− 1 1 1 1 −− −− 1 − 1 −
1 1 −− 1 −− 1 1 1 − 1 − −− 1
1 1 −− −− 1 − 1 − 1 1 1 1 −−
1 1 −− − 1 − −− 1 1 −− 1 1 1
1−− 1 1 1 1 −− 1 − 1 − 1 −−
1−− 1 −− 1 1 1 1 1 −− − 1 −
1−− 1 − 1 − 1 −− 1 1 1 −− 1
1−− 1 1 −− − 1 − −− 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − 1 −− 1 −− 1 −− 1 −
1 1 1 1 1 −− 1 −− 1 −− 1 −−
1 1 1 1 −− 1 −− 1 −− 1 −− 1
1− 1 − 1 1 1 − 1 − 1 −−−− 1
1− 1 −− 1 − 1 1 1 −− 1 1 −−
1− 1 − 1 −−−− 1 1 1 1 − 1 −
1− 1 −−− 1 1 −−− 1 − 1 1 1
1 1 −− 1 1 1 1 −−−− 1 − 1 −
1 1 −− 1 −− 1 1 1 − 1 −−− 1
1 1 −−−− 1 − 1 − 1 1 1 1 −−
1 1 −−− 1 −−− 1 1 −− 1 1 1
1−− 1 1 1 1 −− 1 − 1 − 1 −−
1−− 1 −− 1 1 1 1 1 −−− 1 −
1−− 1 − 1 − 1 −− 1 1 1 −− 1
1−− 1 1 −−− 1 −−− 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − 1 −− 1 −− 1 −− 1 −
1 1 1 1 1 −− 1 −− 1 −− 1 −−
1 1 1 1 −− 1 −− 1 −− 1 −− 1
1− 1 − 1 1 1 − 1 − 1 −−−− 1
1− 1 −− 1 − 1 1 1 −− 1 1 −−
1− 1 − 1 −−−− 1 1 1 1 − 1 −
1− 1 −−− 1 1 −−− 1 − 1 1 1
1 1 −− 1 1 1 1 −−−− 1 − 1 −
1 1 −− 1 −− 1 1 1 − 1 −−− 1
1 1 −−−− 1 − 1 − 1 1 1 1 −−
1 1 −−− 1 −−− 1 1 −− 1 1 1
1−− 1 1 1 1 −− 1 − 1 − 1 −−
1−− 1 −− 1 1 1 1 1 −−− 1 −
1−− 1 − 1 − 1 −− 1 1 1 −− 1
1−− 1 1 −−− 1 −−− 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − 1 −− 1 −− 1 −− 1 −
1 1 1 1 1 −− 1 −− 1 −− 1 −−
1 1 1 1 −− 1 −− 1 −− 1 −− 1
1− 1 − 1 1 1 − 1 − 1 −−−− 1
1− 1 −− 1 − 1 1 1 −− 1 1 −−
1− 1 − 1 −−−− 1 1 1 1 − 1 −
1− 1 −−− 1 1 −−− 1 − 1 1 1
1 1 −− 1 1 1 1 −−−− 1 − 1 −
1 1 −− 1 −− 1 1 1 − 1 −−− 1
1 1 −−−− 1 − 1 − 1 1 1 1 −−
1 1 −−− 1 −−− 1 1 −− 1 1 1
1−− 1 1 1 1 −− 1 − 1 − 1 −−
1−− 1 −− 1 1 1 1 1 −−− 1 −
1−− 1 − 1 − 1 −− 1 1 1 −− 1
1−− 1 1 −−− 1 −−− 1 1 1 1
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An Orthogonal Array; OA(5,4) on {1, 2, 3, 4}

is a 42 × 5 matrix on
{1, 2, 3, 4} alphabets. 

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 2 3 4
2 2 1 4 3
2 3 4 1 2
2 4 3 2 1
3 1 3 4 2
3 3 1 2 4
3 4 2 1 3
3 2 4 3 1
4 1 4 2 3
4 4 1 3 2
4 2 3 1 4
4 3 2 4 1


A normalized Hadamard matrix H4 :

1 1 1 1
1 − 1 −
1 1 − −
1 − − 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 − 1 −− 1 −− 1 −− 1 −
1 1 1 1 1 −− 1 −− 1 −− 1 −−
1 1 1 1 −− 1 −− 1 −− 1 −− 1
1− 1 − 1 1 1 − 1 − 1 −−−− 1
1− 1 −− 1 − 1 1 1 −− 1 1 −−
1− 1 − 1 −−−− 1 1 1 1 − 1 −
1− 1 −−− 1 1 −−− 1 − 1 1 1
1 1 −− 1 1 1 1 −−−− 1 − 1 −
1 1 −− 1 −− 1 1 1 − 1 −−− 1
1 1 −−−− 1 − 1 − 1 1 1 1 −−
1 1 −−− 1 −−− 1 1 −− 1 1 1
1−− 1 1 1 1 −− 1 − 1 − 1 −−
1−− 1 −− 1 1 1 1 1 −−− 1 −
1−− 1 − 1 − 1 −− 1 1 1 −− 1
1−− 1 1 −−− 1 −−− 1 1 1 1
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from
which the first column is removed

we get a 64× 63 matrix which is
splittable in

(9
4

)
= 126 different ways providing 64 ETF in R28 meeting the

DGS upper bound.

Definition

A Hadamard matrix H of order 4n2 is said to be balancedly
multi-splittable, BMS, if there is a block form of
H =

[
1 H1 · · · H2n+1

]
, where each Hi is of order 4n

2 × (2n − 1) such
that H is balancedly splitable with respect to a submatrix

[
Hi1 · · · Hin

]
for any n-element subset {i1, . . . , in} of {1, 2, . . . , 2n + 1}, that is, the
inner product of any distinct rows of

[
Hi1 · · · Hin

]
is ±n.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4n for each positive integer n.

Conjecture: Hadamard matrices of order 4n are the only Hadamard
matrices which are BMS.
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Hadamard matrices related to projective planes
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We have used an OA(5,4) on 4 symbols and a H4,

an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.

What happens if one uses an OA(13,12) and a H12?
It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a
projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective
plane of order n is equivalent to the existence of a balancedly
multi-splittable Hadamard matrix of order n2.

There is a projective plane of order 12 if and only if there is a BMS
Hadamard matrix of order 144, i.e. a Hadamard matrix of order 144
in such a way that there are 1716 different choices of 66 columns
generating ETF in R66 meeting the DGS upper bound.
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OA(13, 12) on 12 alphabets

An OA(13, 12) is a 144× 13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12
provide 12 alphabets of length 11 and inner product of distinct alphabets
-1.

The result is a 144× 143 (1,−1)-matrix with inner product of distinct
rows -1.

By adding a column of ones, a BMS Hadamard matrix (with parameters
(144, 66, 6)) is obtained.
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A BMS Hadamard 144 rebuilds an OA(13, 12)

Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:

H =
[
1 H1 · · · H13

]
,

where each Hi is a 144× (11) matrix.

Lemma

For any i , HiH
⊤
i is a matrix with entries in {−1, 11}.

For each i , consider the matrix H̃i =
[
1 Hi

]
.

It follows that H̃i H̃
⊤
i is a (12, 0)-matrix. Thus some rows of H̃i coincide.

Since H̃⊤
i H̃i = 144I12, the rank of H̃i is 12.

Therefore, there exist exactly 12 distinct rows of H̃i that correspond to the
rows of a Hadamard matrix, say K̃i , of order 12.
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Eureka!

That explains the difficulty in constructing a balancedly splittable
Hadamard matrix of order 144!

Such a matrix, if it exists and most
probably doesn’t exist, must have a very complex structure.

Open Question: Is there a balancedly splittable Hadamard matrix of order
144?

An easier Open Question: Is there a balancedly multi-splittable
Hadamard matrix of order 144?
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Did I miss any?

Yes, I did! Equiangular lines
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Thank you
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