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A finite projective plane of order2
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A finite projective plane of order2

@ 7 points, 7 lines,
@ each point on 3 lines, each line 3 points,

@ any two distinct lines meet at exactly one point,
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A finite projective plane of order2
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@ any two distinct lines meet at exactly one point,

@ any two distinct points lie on exactly one line.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024



A finite projective plane of order2

@ 7 points, 7 lines,
@ each point on 3 lines, each line 3 points,
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Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix D = [dj;] obtained
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Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix D = [dj;] obtained
by Indexing the rows with the points
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Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix D = [dj;] obtained
by Indexing the rows with the points and columns with lines and assigning
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Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix D = [dj;] obtained
by Indexing the rows with the points and columns with lines and assigning

1 if point i is on line j
dij = _
0 otherwise
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Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix D = [dj;] obtained
by Indexing the rows with the points and columns with lines and assigning

1 if point i is on line j
dij = _
0 otherwise

For n = 2 one incidence matrix is

v
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Point-line incidence matrix

The point-line incidence matrix of a p-plane is a matrix D = [dj;] obtained
by Indexing the rows with the points and columns with lines and assigning

~_J1 if pointiis on line |
"7 10 otherwise

For n = 2 one incidence matrix is
1 1 0 1 0 0 O]
0110100
0 011010
0 00 1 1 01
1 00 01 10
01 00011
1 01 0 0 0 1)
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Finite projective plane of order n

A (finite) projective plane of order n has
e n’+ n+1 points
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Finite projective plane of order n

A (finite) projective plane of order n has
e n’+ n+1 points

@ n>+ n+1 lines
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Finite projective plane of order n

A (finite) projective plane of order n has
e n’+ n+1 points
e n’> +n+1 lines

@ every line contains n+ 1 points
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Finite projective plane of order n

A (finite) projective plane of order n has
e n’+ n+1 points
e n’> +n+1 lines
@ every line contains n+ 1 points

°

every point is on n+ 1 lines
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Finite projective plane of order n

A (finite) projective plane of order n has
n? 4+ n+ 1 points
n?+ n+1 lines

°
°
@ every line contains n+ 1 points
@ every point is on n+ 1 lines

°

any two distinct lines meet at exactly one point
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Finite projective plane of order n

A (finite) projective plane of order n has
n? 4+ n+ 1 points
n?+n+1 lines

every point is on n+ 1 lines

°
°

@ every line contains n+ 1 points

°

@ any two distinct lines meet at exactly one point
°

any two distinct points lie on exactly one line
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Finite projective plane of order n

A (finite) projective plane of order n has
e n’+ n+1 points

e n’>+n+1 lines

@ every line contains n+ 1 points

@ every point is on n+ 1 lines

@ any two distinct lines meet at exactly one point
°

any two distinct points lie on exactly one line

A p-plane of order 10 must have 102 + 10 4+ 1 = 111 lines and points.
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Finite projective plane of order n

A (finite) projective plane of order n has
e n’+ n+1 points

e n’>+n+1 lines

@ every line contains n+ 1 points

@ every point is on n+ 1 lines

@ any two distinct lines meet at exactly one point
°

any two distinct points lie on exactly one line

A p-plane of order 10 must have 102 + 10 4+ 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column,
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Finite projective plane of order n

A (finite) projective plane of order n has

e n’+ n+1 points

e n’>+n+1 lines

@ every line contains n+ 1 points

@ every point is on n+ 1 lines
@ any two distinct lines meet at exactly one point
°

any two distinct points lie on exactly one line

A p-plane of order 10 must have 102 + 10 4+ 1 = 111 lines and points.
The p-l incidence matrix is of order 111 with 11 ones in each row and
column, and the inner product of any two distinct rows (columns) must be

one.
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Finite projective plane of order n

A (finite) projective plane of order n has

e n’+ n+1 points

e n’>+n+1 lines

@ every line contains n+ 1 points

@ every point is on n+ 1 lines
@ any two distinct lines meet at exactly one point
°

any two distinct points lie on exactly one line
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Existence of a projective plane of order 10
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Existence of a projective plane of order 10

Wow! 111 x 111 matrix!
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Existence of a projective plane of order 10

Wow! 111 x 111 matrix!
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Existence of a projective plane of order 10

Wow! 111 x 111 matrix!
That is too large!
So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his
coauthors completed the last piece of search
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Existence of a projective plane of order 10

Wow! 111 x 111 matrix!
That is too large!
So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his
coauthors completed the last piece of search after about 2000 hours of
computations on a CRAY-1A supercomputer in 1988. The complexity at
the time involved over 10'# cases to be checked.
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Existence of a projective plane of order 10

Wow! 111 x 111 matrix!
That is too large!
So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his
coauthors completed the last piece of search after about 2000 hours of
computations on a CRAY-1A supercomputer in 1988. The complexity at
the time involved over 10'# cases to be checked.

A New York Times headline in December 1988 read:
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Existence of a projective plane of order 10

Wow! 111 x 111 matrix!
That is too large!
So, it doesn't exist!

Clement Lam, a computer science professor at Concordia, and his
coauthors completed the last piece of search after about 2000 hours of
computations on a CRAY-1A supercomputer in 1988. The complexity at
the time involved over 10'# cases to be checked.

A New York Times headline in December 1988 read:

Is a math proof a proof if no one can check it?
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Notes

o Existence: There is a projective plane of order g for any prime
power g.
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o Existence: There is a projective plane of order g for any prime
power g.

@ Nonexistence: There is no projective plane of order n,
n=1,2 (mod 4),
and n not a sum of two integer squares. None of order

6,14,21,22,30, - - -
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o Existence: There is a projective plane of order g for any prime
power g.

@ Nonexistence: There is no projective plane of order n,
n=1,2 (mod 4),
and n not a sum of two integer squares. None of order

6,14,21,22,30, - - -

@ Open Problem: The first open order is order 12.
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o Existence: There is a projective plane of order g for any prime
power g.

@ Nonexistence: There is no projective plane of order n,
n=1,2 (mod 4),
and n not a sum of two integer squares. None of order
6,14,21,22,30, - - -
@ Open Problem: The first open order is order 12. That is the

existence of a (0, 1)-matrix of order 157 with 13 one in each row and
column and inner product of distinct rows one.
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Bush-type Hadamard matrices
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Example: A Bush-type Hadamard matrix of order 16

111111 - —-—1—-—1 — 1 — — 1
111111 - —-——-—1 -1 — 11 -
1111 - -111 -1 - — 1 1 -
1111 - -11 -1 -1 1 — — 1
1111111 - -1 1 — 1 -
11 --=-1111 -1 1 — — 1 1
- -11111 1 -11 -1 — 1 -—
- -1111 111 - -1 — 1 — 1
1 -1 -1 - -1 11 1 1 1 1 -

- 1 1 -11 - 111 1 1 1 — -—
1 -1 - -11-1111 - — 11
-1 -=-11 - -1111 1 - — 11
1 - -11 -1 -1 1 - — 1 1 1 1
-1 1 - 1 -1 11 - —-— 1 1 1 1
- 1 1 1 -1 - - -1 1 1 1 1 1
1 -1 -1 -1 - -1 1 1 1 1 1
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices that was later labeled as
Bush-type, in 1971.
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices that was later labeled as

Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix H = [H;;] of order 4n?
with block size 2n,
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices that was later labeled as

Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix H = [H;;] of order 4n?
with block size 2n, H;; = b,
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices that was later labeled as

Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix H = [H;;] of order 4n?
with block size 2n, Hjj = J, and Hjjbop = JonHjj =0, i # j, 1 < i < 2n,
1 <j < 2n, where J, is the 2n by 2n matrix of all entries 1.
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices that was later labeled as
Bush-type, in 1971.

A Bush-type Hadamard matrix is a block matrix H = [H;;] of order 4n?
with block size 2n, Hjj = J, and Hjjbop = JonHjj =0, i # j, 1 < i < 2n,
1 <j < 2n, where J, is the 2n by 2n matrix of all entries 1.

Theorem (K. A. Bush, JCTA 1971)

If there is a projective plane of order 10,
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K. A. Bush was the first to establish a link between projective planes of
even order and specific Hadamard matrices that was later labeled as
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@ Bussemaker, Haemers, Spence [2000]: There is no strongly regular
graph with parameters (36, 15,6, 6) and chromatic number six, or
equivalently, there is no symmetric Bush-type Hadamard matrix of

order 36.

January 24, 2024 10 /52
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@ Bussemaker, Haemers, Spence [2000]: There is no strongly regular
graph with parameters (36, 15,6, 6) and chromatic number six, or
equivalently, there is no symmetric Bush-type Hadamard matrix of
order 36.

@ There are over 40,000 inequivalent Bush-type Hadamard matrices of
order 100 and none are symmetric.
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@ Bussemaker, Haemers, Spence [2000]: There is no strongly regular
graph with parameters (36, 15,6, 6) and chromatic number six, or
equivalently, there is no symmetric Bush-type Hadamard matrix of
order 36.

@ There are over 40,000 inequivalent Bush-type Hadamard matrices of
order 100 and none are symmetric.

@ A proof of nonexistence of a symmetric Bush-type Hadamard matrix
of order 100 would imply the nonexistence of 4 MOLS of order 10 and
apriori a projection plane of order 10.
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@ Bussemaker, Haemers, Spence [2000]: There is no strongly regular
graph with parameters (36, 15,6, 6) and chromatic number six, or
equivalently, there is no symmetric Bush-type Hadamard matrix of
order 36.

@ There are over 40,000 inequivalent Bush-type Hadamard matrices of
order 100 and none are symmetric.

@ A proof of nonexistence of a symmetric Bush-type Hadamard matrix
of order 100 would imply the nonexistence of 4 MOLS of order 10 and
apriori a projection plane of order 10.

@ There are many known symmetric Bush-type Hadamard matrix of
order 144,
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@ Bussemaker, Haemers, Spence [2000]: There is no strongly regular
graph with parameters (36, 15,6, 6) and chromatic number six, or
equivalently, there is no symmetric Bush-type Hadamard matrix of
order 36.

@ There are over 40,000 inequivalent Bush-type Hadamard matrices of
order 100 and none are symmetric.

@ A proof of nonexistence of a symmetric Bush-type Hadamard matrix
of order 100 would imply the nonexistence of 4 MOLS of order 10 and
apriori a projection plane of order 10.

@ There are many known symmetric Bush-type Hadamard matrix of
order 144, and thus a new approach (or link) is needed for the
problems related to the projective planes of order 16n?,
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Balancedly Splittable Hadamard matrices
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Here is a balancedly splitted Hadamard matrix of order 4:
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Here is a balancedly splitted Hadamard matrix of order 4:— = —1 and

a= —a.

11 1 1

Hy 1 — 1 -
H_[Hg] 11 - —
1 - - 1
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Here is a balancedly splitted Hadamard matrix of order 4:— = —1 and
a= —a.

1 1 1 1

Hy 1 — 1 -
N R .
1 - -1

N G T W T G ST
[ G T G S Gy
[ G T W T Gy
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Here is a balancedly splitted Hadamard matrix of order 4:— = —1 and
a= —a.

11 1 1
Hi 1 - 1 -
AN .
1 - -1
1 1111
1 1111
Hith= (|1 1 1 1]=1|] | ] ]
1 1111
3 - - —
HIH, = i;:
- - -3
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Here is a balancedly splitted Hadamard matrix of order 4:— = —1 and
a= —a.

11 1 1
Hi 1 - 1 -
AN .
1 - -1
1 1111
1 1111
Hith= (|1 1 1 1]=1|] | ] ]
1 1111
3 - - -
HIH, = i;:
- - 3

Every normalized Hadamard matrix is balancedly splittable in this way.
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Here is a twin balancedly splitted Hadamard matrix of order 16:
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Here is a twin balancedly splitted Hadamard matrix of order 16:

~1111111111111111-
11711 --——-1111-———
11111111 ——-——————
1111 ———————— 1111
IT—- 1 -1-1-1-1-1-1-<-
11--11--11--11-——
H 1--11--11--11--1
#f 11 ----1111---—-11
#;—1—1—1—1——1—1—1—1
2 1--1-11--11-1--1
T—- 1T -—-—1-11-1—--1<-1
1--1-11-1--1-11-
11--11--——-—-11--11
1--11--1-11--11-
1-1--1-1-1-11-1 -
111 - - —-—-11-—-—1111-——
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1-1-1-1-1-1—-1-1-
11— -11--11—-11-—-
Hy — 1--11——11—-—11-—--1
1-J111----1111----11
1-1-1-1--1-1-1-1
1--1-11—-—-11-1—-—-1

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 14 /52



111111111111
S 1111

1111
1111
1111
1111

M1-1-1-1—-1-1-1-1-7
11— -11--11—-11-—-
1--11——11—-—11-—--1

11— ——-1111——--11
1-1-1-1--1-1-1-1
1--1-11—-—-11-1—-—-1

nn-1--1-11-1——1-17
1--1-11-1--1-11-

11— -11—-——-——-11--11
1--11—-—-1-11—-11-

1-1—-1-1-1-11-1-
11— —-——-11--1111—--

1

H

Hy =

14 /52
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Two sets of 16 Equiangular Lines in R®.
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Two sets of 16 Equiangular Lines in R®.

1—-1-1-1-1-1-1-1 -7
11--11--11--11-—
1--11--11--11--1
11--—--1111--——--11
1-1-1-1--1-1-1-1
H] |1-—1-11--11-1-—1
T T=T=-=1I-T1I1-1--1<-1
1--1-11-1--1-11-
11--11---—-11--11
1--11--1-11--11-
1-1--1-1-1-11-1-
11 - —-——-11--1111-——
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HEHy =
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Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its
rows it can be transformed to
_ M
=[]
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Definition
A Hadamard matrix H is balancedly splittable if by suitably permuting its
rows it can be transformed to
_ |
=[]

such that HfH; has at most two distinct off-diagonal entries.
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Definition
A Hadamard matrix H is balancedly splittable if by suitably permuting its
rows it can be transformed to
_ |
=[]

such that HfH; has at most two distinct off-diagonal entries.

Let H = {Zl] be a balancedly splittable Hadamard matrix of order n,
2

where Hy is an £ X n matrix.
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Definition

A Hadamard matrix H is balancedly splittable if by suitably permuting its
rows it can be transformed to
_ |
=[]

such that HfH; has at most two distinct off-diagonal entries.

Ha
where Hj is an £ x n matrix. Then, there exist a positive integer a and a
(0, —1,1)-matrix S such that

Let H = {Hl] be a balancedly splittable Hadamard matrix of order n,

HiHy = ¢, + aS,
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Definition
A Hadamard matrix H is balancedly splittable if by suitably permuting its
rows it can be transformed to
_ |
o= L)

such that HfH; has at most two distinct off-diagonal entries.

Ha
where Hj is an £ x n matrix. Then, there exist a positive integer a and a
(0, —1,1)-matrix S such that

Let H = {Hl] be a balancedly splittable Hadamard matrix of order n,

HiHy = ¢, + aS,

and in this case (¢, a) = (”i2\/57 @)
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Definition
A Hadamard matrix H is balancedly splittable if by suitably permuting its
rows it can be transformed to
_ |
o= L)

such that HfH; has at most two distinct off-diagonal entries.

Let H = {Zl] be a balancedly splittable Hadamard matrix of order n,
2

where Hj is an £ x n matrix. Then, there exist a positive integer a and a
(0, —1,1)-matrix S such that

HiHy = ¢, + aS,

and in this case (¢,a) = ("iQ‘/ﬁ, @) and the notation (n, ¢, a) is used for
(= "_T‘/E throughout.
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An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 22 /52



An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let X C R™ be a set of unit vectors such that (v, w)| = « for all
v,we X, v#£w. If m< L, then

az

m_
X < —=—"7
X<
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An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let X C R™ be a set of unit vectors such that (v, w)| = « for all
v,we X, v#£w. If m< L, then

az

m(1 — a?)
X <—"
Xl < 1 — ma?

@ The 16 Equiangular Lines in R® meet the DGS-upper bound with
1
o = 3
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An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let X C R™ be a set of unit vectors such that (v, w)| = « for all
v,we X, v£Ew. f m< % then

m(1 — a?)
X <—"
Xl < 1 — ma?

@ The 16 Equiangular Lines in R® meet the DGS-upper bound with
1
o = 3

@ The 16 Equiangular Lines in R meet the DGS-upper bound with

=1
a=s.
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An upper bound for Equiangular Lines

Delsarte, Goethals and Seidel (DGS)(1975):

Let X C R™ be a set of unit vectors such that (v, w)| = « for all
v,we X, v£Ew. f m< % then

m(1 — a?)
X <—"
Xl < 1 — ma?

@ The 16 Equiangular Lines in R® meet the DGS-upper bound with
1
o = 3

@ The 16 Equiangular Lines in R meet the DGS-upper bound with

=1
a=s.
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Nonexistence
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There is no balancedly splittable Hadamard matrix with the parameters
(n,¢,a), L+ a#0 (mod 4).
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There is no balancedly splittable Hadamard matrix with the parameters
(n,¢,a), L+ a#0 (mod 4).
Let x, y, x, w be non-negative integers such that

the first column = (+---+ +--- 4+ 4+ b+ )T,
the i-th column=(+---+ +---4+ —- - — _..._)T
thej—thcolumn:(+---+ ——e— e _..._)

S—— N\

X rows Yy rows Z rows W rows
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There is no balancedly splittable Hadamard matrix with the parameters
(n,¢,a), L+ a#0 (mod 4).
Let x, y, x, w be non-negative integers such that

the first column = (4+---+ +---4+ 4.+ +---4)T,

thei—thco|umn:(_|_..._|_ 4+ - = _..._)T,
the j-th column = (+---+ —---— 4.4 _..._)T.
e e e e

X rows Yy rows Z rows W rows

Then it follows that

X+y+z+w =4,

X+y—z—w =a,
X—y+z—w =a,
X—y—z+w = —a.
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There is no balancedly splittable Hadamard matrix with the parameters
(n,¢,a), L+ a#0 (mod 4).
Let x, y, x, w be non-negative integers such that

the first column = (+---+ +--- 4+ 4+ b+ )T,
thei—thco|umn:(_|_...+ 4+ - = _..._)T,
thej—thcolumn:(+---+ ——e— e _..._)

S—— N\

X rows Yy rows Z rows W rows

Then it follows that

X+y+z+w =4,

X+y—z—w =a,
X—y+z—w =a,
X—y—z+w = —a.

SOIVing these equations ylelds (X,’y7 Z, W) — (T, T’ T’ T)

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024



There is no balancedly splittable Hadamard matrix with the parameters
(n,¢,a), L+ a#0 (mod 4).
Let x, y, x, w be non-negative integers such that

the first column = (4+---+ +---4+ 4.+ +---4)T,

thei—thco|umn:(_|_...+ 4+ - = _..._)T,
the j-th column = (+---+ —---— 4.4 _..._)T.
e e e e
X rows Yy rows Z rows W rows
Then it follows that
X+y+z+w =4,
Xt+ty—z—w =a,
X—y+z—w =a,
X—y—z+w = —a.

Solving these equations yields (x,y, z,w) = (52, =52, 52
Therefore, £ +a =0 (mod 4).

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024



There is no balancedly splittable Hadamard matrix with the parameters
(n,¢,a), L+ a#0 (mod 4).
Let x, y, x, w be non-negative integers such that

the first column = (4+---+ +---4+ 4.+ +---4)T,

thei—thco|umn:(_|_...+ 4+ == _..._)T,
the j-th column = (+---+ —---— 4.4 _..._)T.
——— —— —— N —
X rows y rows z rows w rows

Then it follows that

x+y+z+w =/

Y
X+y—z—w =a,
X—y+z—w =a,
X—y—z+w = —a.

Solving these equations yields (x,y,z, w) = (42, &2, tha (533)

5 T
Therefore, £ +a =0 (mod 4).
No Hadamard matrix of order 4n°, n odd, is balancedly splittable.
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Existence
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Theorem (K, Pender, Suda, DCC 2021)
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Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order 64n® for any 4n
an order of a Hadamard matrix.
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Theorem (K, Pender, Suda, DCC 2021)

There is a balancedly splittable Hadamard matrix of order 64n® for any 4n
an order of a Hadamard matrix.

The construction consists of building patiently nine submatrices

G F —F
E A B
—E B A

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 26 /52
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There is a balancedly splittable Hadamard matrix of order 64n® for any 4n
an order of a Hadamard matrix.
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For Hadamard matrices
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For Hadamard matrices

@ There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix.
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For Hadamard matrices

@ There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.
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For Hadamard matrices

@ There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.

o No Hadamard matrix of order 4n?, n odd, is balancedly
splittable.
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For Hadamard matrices

@ There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.

o No Hadamard matrix of order 4n?, n odd, is balancedly
splittable. Case of n = 3 shows the nonexistence of order 36.
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For Hadamard matrices

@ There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.

o No Hadamard matrix of order 4n?, n odd, is balancedly
splittable. Case of n = 3 shows the nonexistence of order 36.

e K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices”
missed case of n = 144.
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For Hadamard matrices

@ There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.

o No Hadamard matrix of order 4n?, n odd, is balancedly
splittable. Case of n = 3 shows the nonexistence of order 36.

e K, Suda, D.M. (2019) "Balancedly splittable Hadamard matrices”
missed case of n = 144.

@ Jonathan Jedwab, et al. EJC (2023) “Constructions and Restrictions
for Balanced Splittable Hadamard Matrices” also missed case of
n =144,
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For Hadamard matrices

There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.

No Hadamard matrix of order 4n?, n odd, is balancedly
splittable. Case of n = 3 shows the nonexistence of order 36.

K, Suda, D.M. (2019) “Balancedly splittable Hadamard matrices”
missed case of n = 144.

Jonathan Jedwab, et al. EJC (2023) “Constructions and Restrictions
for Balanced Splittable Hadamard Matrices” also missed case of
n =144,

Question: Is there a balancedly splittable Hadamard matrix of order
16(3)% = 1447
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For Hadamard matrices

There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.

No Hadamard matrix of order 4n?, n odd, is balancedly
splittable. Case of n = 3 shows the nonexistence of order 36.

K, Suda, D.M. (2019) “Balancedly splittable Hadamard matrices”
missed case of n = 144.

Jonathan Jedwab, et al. EJC (2023) “Constructions and Restrictions
for Balanced Splittable Hadamard Matrices” also missed case of
n =144,

Question: Is there a balancedly splittable Hadamard matrix of order
16(3)% = 1447

Question: Is there a balancedly splittable Hadamard matrix of order
16n2, n an odd integer?
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For Hadamard matrices

There is a balancedly splittable Hadamard matrix of order 64n? for
any 4n an order of a Hadamard matrix. Case of n = 12 = 4(3)
leading to order 576 = 64(3)>2.

No Hadamard matrix of order 4n?, n odd, is balancedly
splittable. Case of n = 3 shows the nonexistence of order 36.

K, Suda, D.M. (2019) “Balancedly splittable Hadamard matrices”
missed case of n = 144.

Jonathan Jedwab, et al. EJC (2023) “Constructions and Restrictions
for Balanced Splittable Hadamard Matrices” also missed case of
n =144,

Question: Is there a balancedly splittable Hadamard matrix of order
16(3)% = 1447

Question: Is there a balancedly splittable Hadamard matrix of order
16n2, n an odd integer?
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@ The most important Hadamard matrix:

@ Auxiliary matrices:

°=(11) a=('7)
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The construction

S1: Form the block Barker sequence
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The construction

S1: Form the block Barker sequence

(o, c1)

is a block Barker sequence with block autocorrelation 0
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The construction

S1: Form the block Barker sequence
o
(co, 1)
is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence
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The construction

S1: Form the block Barker sequence
o
(co, 1)
is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence
@ The sequences
(co,c1,c1)  (co,c1,—c1)

form a block Golay pair with sum of autocorrelation 0.
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The construction

S1: Form the block Barker sequence
o
(co, 1)
is a block Barker sequence with block autocorrelation 0
S2: Form the block Golay sequence
@ The sequences
(co, c1,c1) (co,c1,—c1)
form a block Golay pair with sum of autocorrelation 0.

S3: Form two block circulant matrices
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@ The sequences
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form a block Golay pair with sum of autocorrelation 0.
S3: Form two block circulant matrices
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form a block complementary pair with block autocorrelation 0
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@ Form the matrices
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@ Form the matrices

A=bcirc(cpcrc1), B=bcirc(cpc181)
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@ Form the matrices

A=bcirc(cpcrc1), B=bcirc(cpc181)

Then the matrix

1 1 1 - 1 -1 1 1 - -
1 1 - 1 - 1|1 1 - 1 1

1 - 1 1 1 — |- 1 1 1 1 =

-1 1 1 - 1|1 —-— 1 1 — 1

1 - 1 - 1 1|1 - — 1 1 1

o(A BY_| - 1 - 1 1 1]|- 1 1 - 1 1

8 A)T|TT T 1T - - 11 1 1 - 1 =

1 1 - 1 1 —|1 1 - 1 - 1

-1 1 1 1 —-|1 - 1 1 1 -

1 - 1 1 — 1|- 1 1 1 — 1

1 - - 1 1 1|1 - 1 — 1 1

- 1 - 1 1|- 1 - 1 1 1
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Balancedly multi-splittable Hadamard matrices
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A balanced multi-splitted Hadamard matrix of order 16
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A balanced multi-splitted Hadamard matrix of order 16

e i a el el e e el e e e e e
[y
|
|
=
=
[y
=
|
|
|
|
—
|
—
|
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111111111141 114111

111 -1—--1—--1—-—1-—

11111 ——1 ——|1 ——|1 — —

1j111)——-1—-—-1—--1|—-1

ij-1—-111—-1—-1 ——|—-1

1j-1—--1—-111—--1|1—--

1j-1—-/1—-——--1111—-1-
1j-1—---11-—--1-111

111 —-——111/1 ——|——1—-1-

1——1——{111]-1—-|——1

111 ———-1-1—-1111—--
111 ——-1——-11—-—-|111

j—-1111--1-1—-1—--

j—-1--1/1111—-——-—1-

j—-1-1—-1-—111—--1

j—-11—-——-1—---1J111
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111 11111111 1j11 1111

11111-1—--1—-—-1—-|—1-—

1111111 ——1 ——1 ——|1 — —

111 1|——-1——-1|—-1|—-1

1j-1-111—-1—-1 —-—|—-1

1-1—--1—-111—-1{1 ——

1-1-1-——-—-——-1(111|—-1-—

1i-1—---11-——--1-111

11 -——11111 ——|——1|—1-—

11 -—/1-—j111|—-1—-]—-1

11 ——|—-1-1—-111|1——
11 ——-1—-——1/1—-—|111

j—-11111—-—-1(—-1—-|1 ——

1j]—--1--1111(1 —-—|—1-—

j—-1-1-1-—-/111|—-1

j—-11-—--1—-—-1/|111
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1111111111111 11

j111)—-1—--1—--1—-—1—

11111 ——1 ——|1 ——|1 — —

ij111)—-1—-—-1--1-—--1

ij-1—-j111—-1—-1———-1

1j-1—--1—-111—-—-1|1——

1j-1—-j1—-—--11111—-1—
-1 —-|--11-—--1-111

111 ——j1111 ——|——1—-1—

11 -——1-—-111—-1-|—-1
111 ——|—-1-1—-1111——
111 ——|—-1——-11—-——111

j—-1j111--1-1—-1—-—

j—-1--11111—-——-—1-

j—-1-1—-1-—-111--1

j—-11-—-1—-|--1111
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1111111111111 11

1j111-1—--1—--1—-—1-—

11111 ——1 ——|1 ——|1 — —

1j111)——-1-—-—-1—--1|—-1

j-1-111-1—1 ——|—-1

j-1--1—-111--1|1—--
j-1—-1-——--1111—-1-

1j-1---11-—-1-111

111 -——11141 ——|——1—-1-

11 ——{1——[111-1—-|—-1
11— —|——1]-1—-|111/1——
11— —|—1—-|——1/1——{111

j——-1111-—--1-1—-1—--

j—-1--11111—-——-—1-

j—-1-1—-1-—111--1

j—-11-—-1—-|--1J111
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1jr11j111/11141114111

1111 -1—--1—--1—-—1-—

11111 ——1 ——1 ——|1 — —

Hj111)—-1--1--1|—-1

ij-1—-111-1—-1——|—-1

ij-1--1—-111—-—-1|1—--

j-1—-1-——--1111—-1-
1i-1—-|]--11-—--1-/111

i1 -——-1111 ————1—-1-

111 ——1-—-——111-1—-|—-1
11 ———-1-1—-1111—--
111 -——-1—--11-——|111

j—-1111--1-1—-1—--

j—-1--1/1111—-——-—1-

j—--1-1—-1-—111--1

j—-11-—-1—---1|111
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An Orthogonal Array; OA(5,4) on {1,2,3,4}
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An Orthogonal Array; OA(5,4) on {1,2,3,4} is a 4% x 5 matrix on
{1,2,3,4} alphabets.
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An Orthogonal Array; OA(5,4) on {1,2,3,4} is a 4% x 5 matrix on
{1,2,3,4} alphabets.

AR PWOLOWWNNNNRFEHEE
NWHARMNHWWRARNDWNH
APFEFOWONWHENBARNNFRRWOPRPWNOE
FANWHFWRNFNWRARRWNE

]

WNPAHENPWORPWONEPRPWONDRE
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An Orthogonal Array; OA(5,4) on {1,2,3,4} is a 42 x 5 matrix on
{1,2,3,4} alphabets.

AR PWOLOWWNNNNRFEHEE
NWHARMNHWWRARNDWNH
APFEFOWONWHENBARNNFRRWOPRPWNOE
FANWHFWRNFNWRARRWNE

]

WNPAHENPWORPWONEPRPWONDRE

I r

A normalized Hadamard matrix Hy :

=
|
—_
|
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1jr11j111/11141114111

1111 -1—--1—--1—-—1-—

11111 ——1 ——1 ——|1 — —

Hj111)—-1--1--1|—-1

ij-1—-111-1—-1——|—-1

ij-1--1—-111—-—-1|1—--

j-1—-1-——--1111—-1-
1i-1—-|]--11-—--1-/111

i1 -——-1111 ————1—-1-

111 ——1-—-——111-1—-|—-1
11 ———-1-1—-1111—--
111 -——-1—--11-——|111

j—-1111--1-1—-1—--

j—-1--1/1111—-——-—1-

j—--1-1—-1-—111--1

j—-11-—-1—---1|111
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from
which the first column is removed
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from
which the first column is removed we get a 64 x 63 matrix which is
splittable in (7) = 126 different ways providing 64 ETF in R?® meeting the

DGS upper bound.
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from

which the first column is removed we get a 64 x 63 matrix which is

splittable in (7) = 126 different ways providing 64 ETF in R?® meeting the

DGS upper bound.

Definition
A Hadamard matrix H of order 4n? is said to be balancedly
multi-splittable, BMS,
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from

which the first column is removed we get a 64 x 63 matrix which is

splittable in (7) = 126 different ways providing 64 ETF in R?® meeting the

DGS upper bound.

Definition

A Hadamard matrix H of order 4n? is said to be balancedly
multi-splittable, BMS, if there is a block form of
H= [1 Hy - H2,,+1], where each H; is of order 4n® x (2n — 1)
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which the first column is removed we get a 64 x 63 matrix which is
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DGS upper bound.
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A Hadamard matrix H of order 4n? is said to be balancedly
multi-splittable, BMS, if there is a block form of
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from
which the first column is removed we get a 64 x 63 matrix which is
splittable in (7) = 126 different ways providing 64 ETF in R?® meeting the
DGS upper bound.

A Hadamard matrix H of order 4n? is said to be balancedly
multi-splittable, BMS, if there is a block form of

H= [1 H - H2,,+1], where each H; is of order 4n? x (2n — 1) such
that H is balancedly splitable with respect to a submatrix [H,-l H,-n]
for any n-element subset {i1,...,i,} of {1,2,...,2n+ 1}, that is, the
inner product of any distinct rows of [Hj, --- H;] is £n.
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from
which the first column is removed we get a 64 x 63 matrix which is
splittable in (7) = 126 different ways providing 64 ETF in R?® meeting the
DGS upper bound.

A Hadamard matrix H of order 4n? is said to be balancedly
multi-splittable, BMS, if there is a block form of

H= [1 H - H2,,+1], where each H; is of order 4n? x (2n — 1) such
that H is balancedly splitable with respect to a submatrix [H,-l H,-n]
for any n-element subset {i1,...,i,} of {1,2,...,2n+ 1}, that is, the
inner product of any distinct rows of [Hj, --- H;] is £n.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4" for each positive integer n.
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from
which the first column is removed we get a 64 x 63 matrix which is
splittable in (7) = 126 different ways providing 64 ETF in R?® meeting the
DGS upper bound.

A Hadamard matrix H of order 4n? is said to be balancedly
multi-splittable, BMS, if there is a block form of

H= [1 H - H2,,+1], where each H; is of order 4n? x (2n — 1) such
that H is balancedly splitable with respect to a submatrix [H,-l H,-n]
for any n-element subset {i1,...,i,} of {1,2,...,2n+ 1}, that is, the
inner product of any distinct rows of [Hj, --- H;] is £n.

Lemma (K, Suda, EJC 2023)

There is a BMS Hadamard matrix of order 4" for each positive integer n.

Conjecture: Hadamard matrices of order 4” are the only Hadamard

matrices which are BMS.
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From an OA(9,8) and the rows of a normalized Hadamard matrix H8 from
which the first column is removed we get a 64 x 63 matrix which is
splittable in (7) = 126 different ways providing 64 ETF in R?® meeting the
DGS upper bound.

A Hadamard matrix H of order 4n? is said to be balancedly
multi-splittable, BMS, if there is a block form of
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Hadamard matrices related to projective planes
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We have used an OA(5,4) on 4 symbols and a H4,
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We have used an OA(5,4) on 4 symbols and a H4, an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.
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We have used an OA(5,4) on 4 symbols and a H4, an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.

What happens if one uses an OA(13,12) and a H127
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We have used an OA(5,4) on 4 symbols and a H4, an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.

What happens if one uses an OA(13,12) and a H127
It is not known if there is an OA(13,12) on 12 symbols,
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We have used an OA(5,4) on 4 symbols and a H4, an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.

What happens if one uses an OA(13,12) and a H127
It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a
projective plane of order 12.
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We have used an OA(5,4) on 4 symbols and a H4, an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.

What happens if one uses an OA(13,12) and a H127
It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a
projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective
plane of order n is equivalent to the existence of a balancedly
multi-splittable Hadamard matrix of order n?.

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024 47 /52



We have used an OA(5,4) on 4 symbols and a H4, an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.

What happens if one uses an OA(13,12) and a H127
It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a
projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective
plane of order n is equivalent to the existence of a balancedly
multi-splittable Hadamard matrix of order n?.

There is a projective plane of order 12 if and only if there is a BMS
Hadamard matrix of order 144,
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We have used an OA(5,4) on 4 symbols and a H4, an OA(9,8) on 8
symbols and a H8 to construct BMS Hadamard matrices.

What happens if one uses an OA(13,12) and a H127
It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a
projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective
plane of order n is equivalent to the existence of a balancedly
multi-splittable Hadamard matrix of order n?.

There is a projective plane of order 12 if and only if there is a BMS
Hadamard matrix of order 144, i.e. a Hadamard matrix of order 144
in such a way that there are 1716 different choices of 66 columns
generating ETF in R% meeting the DGS upper bound.
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It is not known if there is an OA(13,12) on 12 symbols, OR equivalently a
projective plane of order 12.

Theorem (K, Suda, EJC 2023)

Let n be the order of a Hadamard matrix. The existence of a projective
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There is a projective plane of order 12 if and only if there is a BMS
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OA(13,12) on 12 alphabets
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OA(13,12) on 12 alphabets

An OA(13,12) is a 144 x 13 matrix on 12 alphabets.
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OA(13,12) on 12 alphabets

An OA(13,12) is a 144 x 13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12
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OA(13,12) on 12 alphabets

An OA(13,12) is a 144 x 13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12

provide 12 alphabets of length 11 and inner product of distinct alphabets
-1.
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OA(13,12) on 12 alphabets

An OA(13,12) is a 144 x 13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12

provide 12 alphabets of length 11 and inner product of distinct alphabets
-1.

The result is a 144 x 143 (1, —1)-matrix with inner product of distinct
rows -1.
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An OA(13,12) is a 144 x 13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12

provide 12 alphabets of length 11 and inner product of distinct alphabets
-1.

The result is a 144 x 143 (1, —1)-matrix with inner product of distinct
rows -1.

By adding a column of ones, a BMS Hadamard matrix (with parameters
(144,66,6)) is obtained.
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An OA(13,12) is a 144 x 13 matrix on 12 alphabets.

Removing the column of all ones from a Hadamard matrix of order 12

provide 12 alphabets of length 11 and inner product of distinct alphabets
-1.

The result is a 144 x 143 (1, —1)-matrix with inner product of distinct
rows -1.

By adding a column of ones, a BMS Hadamard matrix (with parameters
(144,66,6)) is obtained.
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A BMS Hadamard 144 rebuilds an OA(13,12)

Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:
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Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:

H=[1 Hy - Hg|,

where each H; is a 144 x (11) matrix.

For any i, H;H" is a matrix with entries in {—1,11}.
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A BMS Hadamard 144 rebuilds an OA(13,12)

Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:

H=[1 Hy - Hg|,

where each H; is a 144 x (11) matrix.

For any i, H;H" is a matrix with entries in {—1,11}.

For each i, consider the matrix I:I,- = [1 H,-].

H. Kharaghani (NTC-WS) Projective planes and Hadamard matrices January 24, 2024



A BMS Hadamard 144 rebuilds an OA(13,12)

Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:

H=[1 Hy - Hg|,

where each H; is a 144 x (11) matrix.

For any i, H;H" is a matrix with entries in {—1,11}.

For each i, consider the matrix I:I,- = [1 H,-].
It follows that H;H." is a (12, 0)-matrix.
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Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:

H=[1 Hy - Hg|,

where each H; is a 144 x (11) matrix.

For any i, H;H" is a matrix with entries in {—1,11}.

For each i, consider the matrix I:I,- = [1 H,-].
It follows that I:I,I:I,T is a (12,0)-matrix. Thus some rows of H; coincide.
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A BMS Hadamard 144 rebuilds an OA(13,12)

Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:

H=[1 Hy - Hg|,

where each H; is a 144 x (11) matrix.

For any i, H;H" is a matrix with entries in {—1,11}.

For each i, consider the matrix I:I,- = [1 H,-].

It follows that I:I,I:I,T is a (12,0)—ma~trix. Thus some rows of H; coincide.
Since H,-TH,- = 144/,5, the rank of H; is 12.
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A BMS Hadamard 144 rebuilds an OA(13,12)

Assume that H is a balancedly multi-splittable Hadamard matrix of order
144 with respect to the following block form:

H=[1 Hy - Hg|,

where each H; is a 144 x (11) matrix.

For any i, H;H" is a matrix with entries in {—1,11}.

For each i, consider the matrix I:I,- = [1 H,-].

It follows that I:I,I:I,T is a (12,0)-matrix. Thus some rows of H; coincide.
Since I:I,-TI:I,- = 14415, the rank of I:I; is 12.

Therefore, there exist exactly 12 distinct rows of I:/,- that correspond to the
rows of a Hadamard matrix, say K;, of order 12.
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That explains the difficulty in constructing a balancedly splittable
Hadamard matrix of order 144!
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Open Question: Is there a balancedly splittable Hadamard matrix of order
1447
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Open Question: Is there a balancedly splittable Hadamard matrix of order
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An easier Open Question: Is there a balancedly multi-splittable
Hadamard matrix of order 1447
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Finite Projective plane.

Orthogonal Array.

Hadamard matrix.

Bush-type Hadamard matrix.

Balancedly splittable Hadamard matrix.
Balancedly multi-splittable Hadamard matrix.
Mutually Orthogonal Latin Square MOLS.

Block Barker Sequence.

Block Golay pair.
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Finite Projective plane.

Orthogonal Array.

Hadamard matrix.

Bush-type Hadamard matrix.

Balancedly splittable Hadamard matrix.
Balancedly multi-splittable Hadamard matrix.
Mutually Orthogonal Latin Square MOLS.
Block Barker Sequence.

Block Golay pair.

Did I miss any?

Yes, | did! Equiangular lines
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Thank you
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