Bounds on the Number of Solutions to Thue Equations

Greg Knapp
Department of Mathematics and Statistics
University of Calgary

10 April 2024
Counting Techniques

Pacific Institute for the
Mathematical Sciences

Land Acknowledgment

The University of Calgary, located in the heart of Southern Alberta, both acknowledges and pays tribute to the traditional territories of the peoples of Treaty 7, which include the Blackfoot Confederacy (comprised of the Siksika, the Piikani, and the Kainai First Nations), the Tsuut'ina First Nation, and the Stoney Nakoda (including Chiniki, Bearspaw, and Goodstoney First Nations). The City of Calgary is also home to the Métis Nation of Alberta, Districts 5 and 6.

Intro to Thue Equations

Definition

A polynomial $F(x, y) \in \mathbb{Z}[x, y]$ which is homogeneous is said to be an integral binary form.

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques

Intro to Thue Equations

Definition

A polynomial $F(x, y) \in \mathbb{Z}[x, y]$ which is homogeneous is said to be an integral binary form.

$$
\begin{aligned}
& \text { Example } \\
& F(x, y)=x^{6}-3 x^{5} y+6 x^{3} y^{3}+12 y^{6}
\end{aligned}
$$

Intro to Thue Equations

Definition

A polynomial $F(x, y) \in \mathbb{Z}[x, y]$ which is homogeneous is said to be an integral binary form.

Intro to Thue Equations

Definition

A polynomial $F(x, y) \in \mathbb{Z}[x, y]$ which is homogeneous is said to be an integral binary form.

Example

$$
F(x, y)=x^{6}-3 x^{5} y+6 x^{3} y^{3}+12 y^{6}
$$

Definition

Let $F(x, y)$ be an integral binary form which is irreducible over \mathbb{Z} and has degree at least 3 . Let h be an integer. Then the equation

$$
F(x, y)=h
$$

is known as a Thue equation and the inequality

$$
|F(x, y)| \leqslant h
$$

is known as a Thue inequality.

Solutions to Thue equations

Definition

Let $F(x, y)$ be an integral binary form which is irreducible over $\mathbb{Z}[x, y]$ and has degree at least 3 . Let h be an integer. Then the equation

$$
F(x, y)=h
$$

is known as a Thue equation and the inequality

$$
|F(x, y)| \leqslant h
$$

is known as a Thue inequality.

Solutions to Thue equations

Definition

Let $F(x, y)$ be an integral binary form which is irreducible over $\mathbb{Z}[x, y]$ and has degree at least 3 . Let h be an integer. Then the equation

$$
F(x, y)=h
$$

is known as a Thue equation and the inequality

$$
|F(x, y)| \leqslant h
$$

is known as a Thue inequality.

Theorem (Thue, 1909)

There are finitely many integer solutions to any Thue equation.

Solutions to Thue equations

Definition

Let $F(x, y)$ be an integral binary form which is irreducible over $\mathbb{Z}[x, y]$ and has degree at least 3 . Let h be an integer. Then the equation

$$
F(x, y)=h
$$

is known as a Thue equation and the inequality

$$
|F(x, y)| \leqslant h
$$

is known as a Thue inequality.

Theorem (Thue, 1909)

There are finitely many integer solutions to any Thue equation.

Corollary (Thue, 1909)

There are finitely many integer solutions to any Thue inequality.

Why all the hypotheses?

Theorem (Thue, 1909)

$|F(x, y)| \leqslant h$ has finitely many integer solutions when
$F(x, y) \in \mathbb{Z}[x, y]$ has $\operatorname{deg}(F) \geqslant 3$, is irreducible, and is homogeneous.

Why all the hypotheses?

Theorem (Thue, 1909)

$|F(x, y)| \leqslant h$ has finitely many integer solutions when
$F(x, y) \in \mathbb{Z}[x, y]$ has $\operatorname{deg}(F) \geqslant 3$, is irreducible, and is homogeneous.

Necessity of Hypotheses

- $\operatorname{deg}(F) \geqslant 3$ is necessary: $F(x, y)=x^{2}-2 y^{2}$ is irreducible and homogeneous, and $F(x, y)=1$ has infinitely many integer-pair solutions.

Why all the hypotheses?

$$
\begin{aligned}
& \text { Theorem (Thue, 1909) } \\
& |F(x, y)| \leqslant h \text { has finitely many integer solutions when } \\
& F(x, y) \in \mathbb{Z}[x, y] \text { has } \operatorname{deg}(F) \geqslant 3 \text {, is irreducible, and is homogeneous. }
\end{aligned}
$$

Necessity of Hypotheses

- $\operatorname{deg}(F) \geqslant 3$ is necessary: $F(x, y)=x^{2}-2 y^{2}$ is irreducible and homogeneous, and $F(x, y)=1$ has infinitely many integer-pair solutions.
- $F(x, y)$ being irreducible is also necessary: if $F(x, y)$ has a linear factor, say $m x-n y$, then any integer multiple of (n, m) is a solution to $F(x, y)=0$.

Why all the hypotheses?

> Theorem (Thue, 1909)
> $|F(x, y)| \leqslant h$ has finitely many integer solutions when
> $F(x, y) \in \mathbb{Z}[x, y]$ has $\operatorname{deg}(F) \geqslant 3$, is irreducible, and is homogeneous.

Necessity of Hypotheses

- $\operatorname{deg}(F) \geqslant 3$ is necessary: $F(x, y)=x^{2}-2 y^{2}$ is irreducible and homogeneous, and $F(x, y)=1$ has infinitely many integer-pair solutions.
- $F(x, y)$ being irreducible is also necessary: if $F(x, y)$ has a linear factor, say $m x-n y$, then any integer multiple of (n, m) is a solution to $F(x, y)=0$.
- The homogeneity condition is also necessary: if $F(x, y)=x^{6}+y^{3}$, then any integer pair of the form $\left(n,-n^{2}\right)$ will be a solution to $|F(x, y)| \leqslant h$.

Follow-up Questions

Introduction

The Ingredients
Thue's Result
Solving Thue

Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting Techniques

Theorem (Thue, 1909)
There are finitely many integer solutions to any Thue inequality, $|F(x, y)| \leqslant h$.

Follow-up Questions

Theorem (Thue, 1909)

There are finitely many integer solutions to any Thue inequality, $|F(x, y)| \leqslant h$.

Questions

- What are the (integer) solutions to $|F(x, y)| \leqslant h$?

Follow-up Questions

Theorem (Thue, 1909)

There are finitely many integer solutions to any Thue inequality, $|F(x, y)| \leqslant h$.

Questions

- What are the (integer) solutions to $|F(x, y)| \leqslant h$?
- How many solutions are there to $|F(x, y)| \leqslant h$?

Follow-up Questions

Theorem (Thue, 1909)

There are finitely many integer solutions to any Thue inequality, $|F(x, y)| \leqslant h$.

Questions

- What are the (integer) solutions to $|F(x, y)| \leqslant h$?
- How many solutions are there to $|F(x, y)| \leqslant h$?
- On which features of $F(x, y)$ and h do the number of solutions depend?

A Helpful Tool

Bounds on the

 Number of Solutions to Thue EquationsGreg Knapp

Introduction

The Ingredients
Thue's Result
Solving Thue

Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Claim
An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.

A Helpful Tool

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivisio
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomia's

Claim

An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.
Why?

A Helpful Tool

Claim

An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.

Why?

- Write $f(X)=F(X, 1)$.

A Helpful Tool

Claim

An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.

Why?

- Write $f(X)=F(X, 1)$.
- E.g. if $F(x, y)=x^{6}-3 x^{4} y^{2}+y^{6}$, then $f(X)=X^{6}-3 X^{4}+1$.

A Helpful Tool

Claim

An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.

Why?

- Write $f(X)=F(X, 1)$.
- E.g. if $F(x, y)=x^{6}-3 x^{4} y^{2}+y^{6}$, then $f(X)=X^{6}-3 X^{4}+1$.
- Note that $F(x, y)=y^{n} f(x / y)$

A Helpful Tool

Claim

An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.

Why?

- Write $f(X)=F(X, 1)$.
- E.g. if $F(x, y)=x^{6}-3 x^{4} y^{2}+y^{6}$, then $f(X)=X^{6}-3 X^{4}+1$.
- Note that $F(x, y)=y^{n} f(x / y)$
- E.g. if $f(X)=X^{6}-3 X^{4}+1$, then

$$
y^{6} f\left(\frac{x}{y}\right)=y^{6}\left(\left(\frac{x}{y}\right)^{6}-3\left(\frac{x}{y}\right)^{4}+1\right)=F(x, y)
$$

A Helpful Tool

Claim

An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.

Why?

- Write $f(X)=F(X, 1)$.
- Note that $F(x, y)=y^{n} f(x / y)$

A Helpful Tool

Claim

An integral binary form $F(x, y)$ factors into linear factors over $\mathbb{C}[x, y]$.

Why?

- Write $f(X)=F(X, 1)$.
- Note that $F(x, y)=y^{n} f(x / y)$
- Factor $f(X)$ over $\mathbb{C}[X]$:

$$
f(X)=a \prod_{i=1}^{n}\left(X-\alpha_{i}\right)
$$

A Helpful Tool

- We now have

$$
F(x, y)=a y^{n} \prod_{i=1}^{n}\left(\frac{x}{y}-\alpha_{i}\right)
$$

A Helpful Tool

- We now have

$$
F(x, y)=a y^{n} \prod_{i=1}^{n}\left(\frac{x}{y}-\alpha_{i}\right)=a \prod_{i=1}^{n}\left(x-\alpha_{i} y\right)
$$

Solutions Are Connected to Units

Bounds on the Number of Solutions to Thue Equations

Greg Knapp

Introduction

The Ingredients
Thue's Result:
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $\Gamma(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small.Solutions
All Solutions
Trinomials

On this slide, assume for simplicity that the coefficient on x^{n} in $F(x, y)$ is 1 .

Solutions Are Connected to Units

Bounds on the Number of Solutions to Thue Equations

Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions

On this slide, assume for simplicity that the coefficient on x^{n} in $F(x, y)$ is 1 .

Observation

Solving $|F(x, y)|=1$ for rational integers x and y involves finding units.

Solutions Are Connected to Units

On this slide, assume for simplicity that the coefficient on x^{n} in $F(x, y)$ is 1 .

Observation

Solving $|F(x, y)|=1$ for rational integers x and y involves finding units.

Why?

Solutions Are Connected to Units

On this slide, assume for simplicity that the coefficient on x^{n} in $F(x, y)$ is 1 .

Observation

Solving $|F(x, y)|=1$ for rational integers x and y involves finding units.

Why?

- Factor $F(x, y)$ over $\mathbb{C}[x, y]$:

$$
F(x, y)=\left(x-\alpha_{1} y\right) \cdots\left(x-\alpha_{n} y\right)
$$

Solutions Are Connected to Units

On this slide, assume for simplicity that the coefficient on x^{n} in $F(x, y)$ is 1 .

Observation

Solving $|F(x, y)|=1$ for rational integers x and y involves finding units.

Why?

- Factor $F(x, y)$ over $\mathbb{C}[x, y]$:

$$
F(x, y)=\left(x-\alpha_{1} y\right) \cdots\left(x-\alpha_{n} y\right)
$$

- Then $\alpha_{1}, \ldots, \alpha_{n}$ are Galois conjugates. Let $K=\mathbb{Q}\left(\alpha_{1}\right)$, so

$$
F(x, y)=\mathrm{N}_{K / \mathbb{Q}}\left(x-\alpha_{1} y\right) .
$$

Solutions Are Connected to Units

On this slide, assume for simplicity that the coefficient on x^{n} in $F(x, y)$ is 1 .

Observation

Solving $|F(x, y)|=1$ for rational integers x and y involves finding units.

Why?

■ Factor $F(x, y)$ over $\mathbb{C}[x, y]$:

$$
F(x, y)=\left(x-\alpha_{1} y\right) \cdots\left(x-\alpha_{n} y\right)
$$

■ Then $\alpha_{1}, \ldots, \alpha_{n}$ are Galois conjugates. Let $K=\mathbb{Q}\left(\alpha_{1}\right)$, so

$$
F(x, y)=\mathrm{N}_{K / \mathbb{Q}}\left(x-\alpha_{1} y\right)
$$

■ Hence, the condition that $|F(x, y)|=1$ is equivalent to the condition that $x-\alpha_{i} y$ is a unit for each i.

Baker's Method

Bounds on the
Number of
Solutions to Thue Equations

Greg Knapp

Overview of Baker's Method

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on
Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small.Solutions
All Solutions
Trinomials

Baker's Method

Overview of Baker's Method

- Solving $|F(x, y)|=h$ involves finding certain (related) units, say u_{1} and u_{2}.

Baker's Method

Overview of Baker's Method

■ Solving $|F(x, y)|=h$ involves finding certain (related) units, say u_{1} and u_{2}.

- Those units satisfy a unit equation, which produces an equation of the form

$$
\gamma_{0} \varepsilon_{1}^{b_{1}} \ldots \varepsilon_{r}^{b_{r}}-1=\frac{-1}{\gamma_{2} u_{2}} .
$$

Baker's Method

Overview of Baker's Method

■ Solving $|F(x, y)|=h$ involves finding certain (related) units, say u_{1} and u_{2}.

- Those units satisfy a unit equation, which produces an equation of the form

$$
\gamma_{0} \varepsilon_{1}^{b_{1}} \ldots \varepsilon_{r}^{b_{r}}-1=\frac{-1}{\gamma_{2} u_{2}}
$$

■ Baker's method gives lower bounds on the left-hand side, and hence, an upper bound on u_{2}.

Baker's Method

Overview of Baker's Method

■ Solving $|F(x, y)|=h$ involves finding certain (related) units, say u_{1} and u_{2}.

- Those units satisfy a unit equation, which produces an equation of the form

$$
\gamma_{0} \varepsilon_{1}^{b_{1}} \ldots \varepsilon_{r}^{b_{r}}-1=\frac{-1}{\gamma_{2} u_{2}}
$$

■ Baker's method gives lower bounds on the left-hand side, and hence, an upper bound on u_{2}.

- Those bounds can be traced back to bounds on x and y.

An Effective Algorithm

Bounds on the

Number of Solutions to Thue Equations

Greg Knapp

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on
Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $F(x, y)$ has degree n and $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $F(x, y)$ has degree n and $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $F(x, y)$ has degree n and $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:
■ Choose a $\kappa>n$.

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $F(x, y)$ has degree n and $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:

- Choose a $\kappa>n$.
- Compute $C_{F, \kappa}$.

An Effective Algorithm

Theorem (Baker, 1968)

Suppose that $F(x, y)$ has degree n and $\kappa>n$. Then any $x, y \in \mathbb{Z}$ with $|F(x, y)| \leqslant h$ has

$$
\max (|x|,|y|) \leqslant C_{F, \kappa} h^{(\log h)^{\kappa-1}}
$$

where $C_{F, \kappa}$ is an effectively computable constant depending only on $F(x, y)$ and κ.

Benefits

This gives an effective algorithm for solving Thue's inequality:

- Choose a $\kappa>n$.
- Compute $C_{F, \kappa}$.
- Test all pairs $(x, y) \in \mathbb{Z}^{2}$ satisfying $\max (|x|,|y|) \leqslant C_{F, \kappa} e^{(\log h)^{k}}$ to see if $|F(x, y)| \leqslant h$.

Baker's Bound

Theorem (Baker, 1968)
Any pair $x, y \in \mathbb{Z}$ satisfying $|F(x, y)| \leqslant h$ has (choosing $\kappa=n+1$)

$$
\max (|x|,|y|) \leqslant C_{F} h^{(\log h)^{n}}
$$

Baker's Bound

Theorem (Baker, 1968)
Any pair $x, y \in \mathbb{Z}$ satisfying $|F(x, y)| \leqslant h$ has (choosing $\kappa=n+1$)

$$
\max (|x|,|y|) \leqslant C_{F} h^{(\log h)^{n}} .
$$

How Many Solutions?

- Define $N(F, h):=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)| \leqslant h\right\}$.

Baker's Bound

Theorem (Baker, 1968)

Any pair $x, y \in \mathbb{Z}$ satisfying $|F(x, y)| \leqslant h$ has (choosing $\kappa=n+1$)

$$
\max (|x|,|y|) \leqslant C_{F} h^{(\log h)^{n}} .
$$

How Many Solutions?

■ Define $N(F, h):=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)| \leqslant h\right\}$.
■ Baker's theorem immediately gives

$$
N(F, h) \leqslant\left(2 C_{F} h^{(\log h)^{n}}+1\right)^{2} \asymp_{F} h^{2(\log h)^{n}}
$$

Baker's Bound

Theorem (Baker, 1968)
Any pair $x, y \in \mathbb{Z}$ satisfying $|F(x, y)| \leqslant h$ has (choosing $\kappa=n+1$)

$$
\max (|x|,|y|) \leqslant C_{F} h^{(\log h)^{n}} .
$$

How Many Solutions?

- Define $N(F, h):=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)| \leqslant h\right\}$.
- Baker's theorem immediately gives

$$
N(F, h) \leqslant\left(2 C_{F} h^{(\log h)^{n}}+1\right)^{2} \asymp_{F} h^{2(\log h)^{n}} .
$$

Question

Is this what the growth rate of $N(F, h)$ actually looks like?

Aside

"Eliminating" h

Observe that $\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant h$ if and only if

$$
\left|\left(\frac{x}{h^{1 / 5}}\right)^{5}+3\left(\frac{x}{h^{1 / 5}}\right)^{4}\left(\frac{y}{h^{1 / 5}}\right)-\left(\frac{y}{h^{1 / 5}}\right)^{5}\right| \leqslant 1
$$

Aside

"Eliminating" h

Observe that $\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant h$ if and only if

$$
\left|\left(\frac{x}{h^{1 / 5}}\right)^{5}+3\left(\frac{x}{h^{1 / 5}}\right)^{4}\left(\frac{y}{h^{1 / 5}}\right)-\left(\frac{y}{h^{1 / 5}}\right)^{5}\right| \leqslant 1
$$

Fact

$$
|F(x, y)| \leqslant h \text { if and only if }
$$

$$
\left|F\left(\frac{x}{h^{1 / n}}, \frac{y}{h^{1 / n}}\right)\right| \leqslant 1 .
$$

Geometric View of $|F(x, y)| \leqslant h$

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

$\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant 30$

Geometric View of $|F(x, y)| \leqslant h$

Introduction

The ingredients Thue's Result

Solving Thue Equations

Bounding the Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions Small Solutions All Solutions

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

$\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant 1$
$\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant 10$

$$
\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant 30
$$

Computing $N(F, h)$

Some values of $N(F, h)$ for $F(x, y)=x^{5}+3 x^{4} y-y^{5}$:

Geometric View of $|F(x, y)| \leqslant h$

Introduction
The ingredients Thue's Result

Solving Thue Equations

Bounding the Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions Small Solutions All Solutions Trinomials

A Picture

$|F(x, y)| \leqslant h$ corresponds to a region of the $x y$-plane:

$\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant 1$

$$
\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant 10
$$

$$
\left|x^{5}+3 x^{4} y-y^{5}\right| \leqslant 30
$$

Computing $N(F, h)$

Some values of $N(F, h)$ for $F(x, y)=x^{5}+3 x^{4} y-y^{5}$:

h	1	10	30
$N(F, h)$	9	11	17

Exploring Dependence on h

Bounds on the
Number of
Solutions to
Thue Equations
Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomiais
$N(F, h)$ and volume
$N(F, h)=$ number of lattice points "inside" $|F(x, y)| \leqslant h$

Exploring Dependence on h

$$
\begin{aligned}
N(F, h) & =\text { number of lattice points "inside" }|F(x, y)| \leqslant h \\
& \approx \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\}
\end{aligned}
$$

Exploring Dependence on h

$N(F, h)=$ number of lattice points "inside" $|F(x, y)| \leqslant h$

$$
\begin{aligned}
& \approx \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(x h^{-1 / n}, y h^{-1 / n}\right)\right| \leqslant 1\right\}
\end{aligned}
$$

Exploring Dependence on h

$N(F, h)$ and volume
$N(F, h)=$ number of lattice points "inside" $|F(x, y)| \leqslant h$

$$
\begin{aligned}
& \approx \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(x h^{-1 / n}, y h^{-1 / n}\right)\right| \leqslant 1\right\} \\
& =\operatorname{vol}\left\{\left(h^{1 / n} u, h^{1 / n} v\right) \in \mathbb{R}^{2}:|F(u, v)| \leqslant 1\right\}
\end{aligned}
$$

Exploring Dependence on h

$N(F, h)$ and volume

$$
N(F, h)=\text { number of lattice points "inside" }|F(x, y)| \leqslant h
$$

$$
\begin{aligned}
& \approx \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\} \\
& =\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(x h^{-1 / n}, y h^{-1 / n}\right)\right| \leqslant 1\right\} \\
& =\operatorname{vol}\left\{\left(h^{1 / n} u, h^{1 / n} v\right) \in \mathbb{R}^{2}:|F(u, v)| \leqslant 1\right\} \\
& =h^{2 / n} \operatorname{vol}\left\{(u, v) \in \mathbb{R}^{2}:|F(u, v)| \leqslant 1\right\}
\end{aligned}
$$

Exploring Dependence on h

$N(F, h)$ and volume
$N(F, h)=$ number of lattice points "inside" $|F(x, y)| \leqslant h$

$$
\approx \operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant h\right\}
$$

$$
=\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:\left|F\left(x h^{-1 / n}, y h^{-1 / n}\right)\right| \leqslant 1\right\}
$$

$$
=\operatorname{vol}\left\{\left(h^{1 / n} u, h^{1 / n} v\right) \in \mathbb{R}^{2}:|F(u, v)| \leqslant 1\right\}
$$

$$
=h^{2 / n} \operatorname{vol}\left\{(u, v) \in \mathbb{R}^{2}:|F(u, v)| \leqslant 1\right\}
$$

$$
\approx h^{2 / n} N(F, 1)
$$

Exploring dependence on h

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$
Results
Counting Techniques

Theorem (Mahler, 1934)
Let

$$
V(F, 1):=\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\}
$$

Then

$$
N(F, h) \asymp h^{2 / n} V(F, 1) .
$$

Exploring dependence on h

Theorem (Mahler, 1934)

Let

$$
V(F, 1):=\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\} .
$$

Then

$$
N(F, h) \asymp h^{2 / n} V(F, 1) .
$$

Moral

The factor of $h^{2 / n}$ is necessary and sufficient and we expect

$$
N(F, h) \approx h^{2 / n} \cdot N(F, 1)
$$

Exploring dependence on h

Theorem (Mahler, 1934)

Let

$$
V(F, 1):=\operatorname{vol}\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leqslant 1\right\} .
$$

Then

$$
N(F, h) \asymp h^{2 / n} V(F, 1) .
$$

Moral

The factor of $h^{2 / n}$ is necessary and sufficient and we expect

$$
N(F, h) \approx h^{2 / n} \cdot N(F, 1)
$$

Next Steps

Now we aim to estimate $N(F, 1)=\#\left\{(x, y) \in \mathbb{Z}^{2}:|F(x, y)|=1\right\}$.

Important Features of $F(x, y)$

Notation

- Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.

Important Features of $F(x, y)$

Notation

- Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$. - Let $n=\operatorname{deg}(F)$.

Important Features of $F(x, y)$

Notation

■ Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.

- Let $n=\operatorname{deg}(F)$.

■ Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

Important Features of $F(x, y)$

Notation

■ Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.

- Let $n=\operatorname{deg}(F)$.

■ Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F.

Important Features of $F(x, y)$

Notation

- Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.
- Let $n=\operatorname{deg}(F)$.
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}} .
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F.
- Example: $F(x, y)=x^{6}-2 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

Important Features of $F(x, y)$

Notation

- Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.
- Let $n=\operatorname{deg}(F)$.
- Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}} .
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F.
- Example: $F(x, y)=x^{6}-2 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$
- $n=6$

Important Features of $F(x, y)$

Notation

- Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.
- Let $n=\operatorname{deg}(F)$.

■ Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F.

■ Example: $F(x, y)=x^{6}-2 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

- $n=6$
- $s=3$

Important Features of $F(x, y)$

Notation

- Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.
- Let $n=\operatorname{deg}(F)$.

■ Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F.

■ Example: $F(x, y)=x^{6}-2 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

- $n=6$
- $s=3$
- $H=10$

Important Features of $F(x, y)$

Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions

Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting Techniques
Solution Subdivisio
Large Solutions
Medium Solutions Small Solutions All Solutions

Notation

■ Let $F(x, y)$ be an irreducible integral binary form of degree $\geqslant 3$.

- Let $n=\operatorname{deg}(F)$.

■ Suppose that F has $s+1$ nonzero summands: i.e.

$$
F(x, y)=\sum_{i=0}^{s} a_{i} x^{n_{i}} y^{n-n_{i}}
$$

- Set $H=\max _{i}\left|a_{i}\right|$ to be the height of F.

■ Example: $F(x, y)=x^{6}-2 x^{4} y^{2}+10 x^{2} y^{4}+10 y^{6}$

- $n=6$
- $s=3$
- $H=10$

Question

How does $N(F, 1)$ depend on n, s, and H ?

The Big Idea: Rational Approximation

Bounds on the
Number of Solutions to Thue Equations

Greg Knapp

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions

Dependence on h Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Start with a solution, $(p, q) \in \mathbb{Z}^{2}$ with $q \neq 0$, so that

$$
|F(p, q)|=1
$$

The Big Idea: Rational Approximation

Bounds on the
Number of Solutions to Thue Equations

Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions

Dependence on h

 Dependence on Other Features of $F(x, y)$Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Start with a solution, $(p, q) \in \mathbb{Z}^{2}$ with $q \neq 0$, so that

$$
|F(p, q)|=1
$$

Factor $F(x, y)$ over $\mathbb{C}[x, y]$ and get

$$
|a| \prod_{i=1}^{n}\left|p-\alpha_{i} q\right|=1
$$

The Big Idea: Rational Approximation

Bounds on the
Number of Solutions to Thue Equations
Greg Knapp

Introduction
The lingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting Techniques

Start with a solution, $(p, q) \in \mathbb{Z}^{2}$ with $q \neq 0$, so that

$$
|F(p, q)|=1
$$

Factor $F(x, y)$ over $\mathbb{C}[x, y]$ and get

$$
|a| \prod_{i=1}^{n}\left|p-\alpha_{i} q\right|=1 .
$$

Divide both sides by $|q|^{n}$ and get

$$
|a| \prod_{i=1}^{n}\left|\frac{p}{q}-\alpha_{i}\right|=\frac{1}{|q|^{n}}
$$

The Big Idea: Rational Approximation

Bounds on the
Number of Solutions to Thue Equations
Greg Knapp

Introduction
The lingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting Techniques

Start with a solution, $(p, q) \in \mathbb{Z}^{2}$ with $q \neq 0$, so that

$$
|F(p, q)|=1
$$

Factor $F(x, y)$ over $\mathbb{C}[x, y]$ and get

$$
|a| \prod_{i=1}^{n}\left|p-\alpha_{i} q\right|=1
$$

Divide both sides by $|q|^{n}$ and get

$$
|a| \prod_{i=1}^{n}\left|\frac{p}{q}-\alpha_{i}\right|=\frac{1}{|q|^{n}}=\text { small. }
$$

The Big Idea: Rational Approximation

Start with a solution, $(p, q) \in \mathbb{Z}^{2}$ with $q \neq 0$, so that

$$
|F(p, q)|=1
$$

Factor $F(x, y)$ over $\mathbb{C}[x, y]$ and get

$$
|a| \prod_{i=1}^{n}\left|p-\alpha_{i} q\right|=1
$$

Divide both sides by $|q|^{n}$ and get

$$
|a| \prod_{i=1}^{n}\left|\frac{p}{q}-\alpha_{i}\right|=\frac{1}{|q|^{n}}=\text { small. }
$$

In order for the product to be small, one of the terms in the product must be small.

The Big Idea: Rational Approximation

Start with a solution, $(p, q) \in \mathbb{Z}^{2}$ with $q \neq 0$, so that

$$
|F(p, q)|=1
$$

Factor $F(x, y)$ over $\mathbb{C}[x, y]$ and get

$$
|a| \prod_{i=1}^{n}\left|p-\alpha_{i} q\right|=1
$$

Divide both sides by $|q|^{n}$ and get

$$
|a| \prod_{i=1}^{n}\left|\frac{p}{q}-\alpha_{i}\right|=\frac{1}{|q|^{n}}=\text { small. }
$$

In order for the product to be small, one of the terms in the product must be small. So for some i,

$$
\left|\frac{p}{q}-\alpha_{i}\right|=\text { small. }
$$

The Big Idea: Rational Approximation

Important Connection

Every solution (p, q) to the Thue equation $|F(x, y)|=1$ with $q \neq 0$ yields a good rational approximation $\frac{p}{q}$ to a root α of $f(X)=F(X, 1)$.

The Big Idea: Rational Approximation

Important Connection

Every solution (p, q) to the Thue equation $|F(x, y)|=1$ with $q \neq 0$ yields a good rational approximation $\frac{p}{q}$ to a root α of $f(X)=F(X, 1)$.

Question

Why do we care about rational approximations of algebraic numbers?

The Big Idea: Rational Approximation

Important Connection

Every solution (p, q) to the Thue equation $|F(x, y)|=1$ with $q \neq 0$ yields a good rational approximation $\frac{p}{q}$ to a root α of $f(X)=F(X, 1)$.

Question

Why do we care about rational approximations of algebraic numbers?

Answer

There are many tools to count good rational approximations of algebraic numbers.

The Big Idea: Rational Approximation

Important Connection

Every solution (p, q) to the Thue equation $|F(x, y)|=1$ with $q \neq 0$ yields a good rational approximation $\frac{p}{q}$ to a root α of $f(X)=F(X, 1)$.

Question

Why do we care about rational approximations of algebraic numbers?

Answer

There are many tools to count good rational approximations of algebraic numbers.

Note

Pairs of integers (p, q) are not in bijection with rational numbers $\frac{p}{q}$. Sometimes, we will count primitive solutions, i.e. those with $\operatorname{gcd}(p, q)=1$.

Why s?

Bounds on the Number of Solutions to Thue Equations

Greg Knapp

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions

Dependence on h Dependence on Other Features of $F(x, y)$

Results
Counting Techniques

Solution Subdivision

Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Height and degree are commonly used to describe complexity.

Why s?

Height and degree are commonly used to describe complexity.

Question

Why is the number of nonzero summands of $F(x, y)$ relevant?

Why s?

Height and degree are commonly used to describe complexity.

Question

Why is the number of nonzero summands of $F(x, y)$ relevant?

Answer

- If $|F(p, q)|=1$, then $\frac{p}{q}$ is close to a root of $f(X):=F(X, 1)$.

Why s?

Height and degree are commonly used to describe complexity.

Question

Why is the number of nonzero summands of $F(x, y)$ relevant?

Answer

- If $|F(p, q)|=1$, then $\frac{p}{q}$ is close to a root of $f(X):=F(X, 1)$.
- Intuitively, $\frac{p}{q}$ is unlikely to be close to a nonreal root of $f(X)$.

Height and degree are commonly used to describe complexity.

Question

Why is the number of nonzero summands of $F(x, y)$ relevant?

Answer

- If $|F(p, q)|=1$, then $\frac{p}{q}$ is close to a root of $f(X):=F(X, 1)$.
- Intuitively, $\frac{p}{q}$ is unlikely to be close to a nonreal root of $f(X)$.
- Solutions to $|F(x, y)|=1$ "should" correspond to rational approximations to real roots of $f(X)$.

Height and degree are commonly used to describe complexity.

Question

Why is the number of nonzero summands of $F(x, y)$ relevant?

Answer

- If $|F(p, q)|=1$, then $\frac{p}{q}$ is close to a root of $f(X):=F(X, 1)$.
- Intuitively, $\frac{p}{q}$ is unlikely to be close to a nonreal root of $f(X)$.
- Solutions to $|F(x, y)|=1$ "should" correspond to rational approximations to real roots of $f(X)$.

Lemma (Descartes, 1637)

If $g(x) \in \mathbb{R}[x]$ has $s+1$ nonzero summands, then $g(x)$ has no more than $2 s+1$ real roots.

Exploring $N(F, 1)$

Previous Facts

- Solutions (p, q) to $|F(x, y)|=1$ should correspond to rational approximations of some real root of $f(X):=F(X, 1)$.

Exploring $N(F, 1)$

Previous Facts

- Solutions (p, q) to $|F(x, y)|=1$ should correspond to rational approximations of some real root of $f(X):=F(X, 1)$.
- There are $s+1$ nonzero summands of $F(x, y)$.

Exploring $N(F, 1)$

Previous Facts

- Solutions (p, q) to $|F(x, y)|=1$ should correspond to rational approximations of some real root of $f(X):=F(X, 1)$.
- There are $s+1$ nonzero summands of $F(x, y)$.
- There are at most $2 s+1$ real roots of $f(X)$.

Exploring $N(F, 1)$

Number of Approximations per Root

We expect the number of rational approximations per root to be absolutely bounded.

Exploring $N(F, 1)$

Number of Approximations per Root

We expect the number of rational approximations per root to be absolutely bounded.

Conclusion

We expect there to be no more than a constant times s solutions to $|F(x, y)|=1$.

Useful Notation

Bounds on the
Number of
Solutions to
Thue Equations
Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on
Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Notation

- $f(x) \ll g(x)$ means that there exists an absolute constant C so that $f(x) \leqslant C \cdot g(x)$.

Useful Notation

Notation

- $f(x) \ll g(x)$ means that there exists an absolute constant C so that $f(x) \leqslant C \cdot g(x)$.

Meaning

The symbol << means "(is) no more than a constant times."

Useful Notation

Notation

- $f(x) \ll g(x)$ means that there exists an absolute constant C so that $f(x) \leqslant C \cdot g(x)$.

Meaning

The symbol \ll means "(is) no more than a constant times."

Conclusion (rephrased)

We expect there to be $\ll s$ solutions to $|F(x, y)|=1$.

A Conjecture and Theorem of Mueller and Schmidt

The Pieces

Recall that we expect:

$$
\begin{aligned}
& N(F, h) \approx h^{2 / n} \cdot N(F, 1) \\
& N(F, 1) \ll s
\end{aligned}
$$

A Conjecture and Theorem of Mueller and Schmidt

The Pieces

Recall that we expect:

$$
\begin{aligned}
& N(F, h) \approx h^{2 / n} \cdot N(F, 1) \\
& N(F, 1) \ll s
\end{aligned}
$$

Conjecture (Mueller and Schmidt, 1987)

$$
N(F, h) \ll s h^{2 / n} .
$$

A Conjecture and Theorem of Mueller and Schmidt

The Pieces

Recall that we expect:

$$
\begin{aligned}
& N(F, h) \approx h^{2 / n} \cdot N(F, 1) . \\
& N(F, 1) \ll s .
\end{aligned}
$$

Conjecture (Mueller and Schmidt, 1987)

$$
N(F, h) \ll s h^{2 / n} .
$$

Theorem (Mueller and Schmidt, 1987)

$$
N(F, h) \ll s^{2} h^{2 / n}\left(1+\log h^{1 / n}\right) .
$$

General Thue Inequalities

Theorem (Mueller and Schmidt, 1987)

Introduction

The Ingredients
Thue's Result
Solving Thue

$$
N(F, h) \ll s^{2} h^{2 / n}\left(1+\log h^{1 / n}\right) .
$$

General Thue Inequalities

Theorem (Mueller and Schmidt, 1987)

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the

Dependence on h
Dependence on Other Features of $F(x, y)$

Theorem (Saradha and Sharma, 2017)

where Φ measures the "sparsity" of $F(x, y)$ and satisfies $(\log s)^{3} \leqslant e^{\Phi} \ll s$.

$$
N(F, h) \ll s^{2} h^{2 / n}\left(1+\log h^{1 / n}\right)
$$

$$
N(F, h) \ll s e^{\Phi} h^{2 / n}\left(1+\log h^{1 / n}\right)
$$

Weak Assumptions on s and h

Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the Number of Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting Techniques

Theorem (Mueller and Schmidt, 1987)
If $n \geqslant s(\log s)^{3}$, then

$$
N(F, h) \ll s^{2} h^{2 / n}
$$

Weak Assumptions on s and h

Theorem (Mueller and Schmidt, 1987)
If $n \geqslant s(\log s)^{3}$, then

$$
N(F, h) \ll s^{2} h^{2 / n}
$$

Results

Counting Techniques

Conjecture (Mueller and Schmidt, 1987)

$$
\text { For any } \rho>0 \text {, if } h \leqslant H^{1-\frac{s}{n}-\rho} \text {, then }
$$

$$
N(F, h) \ll C(s, \rho)
$$

Weak Assumptions on s and h

Theorem (Mueller and Schmidt, 1987)
If $n \geqslant s(\log s)^{3}$, then

$$
N(F, h) \ll s^{2} h^{2 / n}
$$

Conjecture (Mueller and Schmidt, 1987)

For any $\rho>0$, if $h \leqslant H^{1-\frac{s}{n}-\rho}$, then

$$
N(F, h) \ll C(s, \rho) .
$$

Theorem (Akhtari and Bengoechea, 2020)
If h is small relative to the discriminant of $F(x, y)$, then

$$
N(F, h) \ll s(\log s) \min \left(1, \frac{1}{\log n-\log s}\right) .
$$

Picking Values for s and h

Theorem (Bennett, 2001)
$a x^{n}-b y^{n}=1$ has at most one solution in positive integers x and y.

Picking Values for s and h

Theorem (Bennett, 2001)

$a x^{n}-b y^{n}=1$ has at most one solution in positive integers x and y.
Theorem (Thomas, 2000)
If $F(x, y)=a x^{n}+b x^{k} y^{n-k}+c y^{n}$, there are no more than $C_{1}(n)$ solutions to $|F(x, y)|=1$ where $C_{1}(n)$ is defined by

n	6	7	8	9	$10-11$	$12-16$	$17-37$	$\geqslant 38$
$C_{1}(n)$	136	86	96	62	72	60	56	48

Types of Solutions

Separating Solutions

- Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F.

Types of Solutions

Separating Solutions

- Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F.
- $Y_{L} \approx Y_{S}^{s}$

Types of Solutions

Separating Solutions

■ Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F.

- $Y_{L} \approx Y_{S}^{s}$

■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...
■ ... small if $\min (|x|,|y|) \leqslant Y_{S}$.

Types of Solutions

Separating Solutions

■ Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F.

- $Y_{L} \approx Y_{S}^{s}$

■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...
■ ...small if $\min (|x|,|y|) \leqslant Y_{S}$.

- ... medium if $\min (|x|,|y|)>Y_{S}$ and $\max (|x|,|y|) \leqslant Y_{L}$.

Types of Solutions

Separating Solutions

■ Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F.

- $Y_{L} \approx Y_{S}^{s}$

■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...
■ ...small if $\min (|x|,|y|) \leqslant Y_{S}$.
■ ... medium if $\min (|x|,|y|)>Y_{S}$ and $\max (|x|,|y|) \leqslant Y_{L}$.
■ ...large if $\max (|x|,|y|)>Y_{L}$.

Types of Solutions

Separating Solutions

- Begin by choosing some (explicit) constants $0<Y_{S}<Y_{L}$ which depend on F.
- $Y_{L} \approx Y_{S}^{s}$

■ Then we say that a solution to $|F(x, y)| \leqslant h$ is...
■ ...small if $\min (|x|,|y|) \leqslant Y_{S}$.
■ ... medium if $\min (|x|,|y|)>Y_{S}$ and $\max (|x|,|y|) \leqslant Y_{L}$.
■ ...large if $\max (|x|,|y|)>Y_{L}$.

Counting Large Solutions

Bounds on the
Number of Solutions to Thue Equations

Greg Knapp

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on
Other Features of
$F(x, y)$
Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Counting Large Solutions

Theorem (Mueller and Schmidt, 1987)

The number of primitive large solutions to $|F(x, y)| \leqslant h$ is $\ll s$.

Counting Large Solutions

Theorem (Mueller and Schmidt, 1987)
The number of primitive large solutions to $|F(x, y)| \leqslant h$ is $\ll s$.

Mueller and Schmidt's Theorem

- This is good enough that there's no need to improve this.

Counting Large Solutions

Theorem (Mueller and Schmidt, 1987)

The number of primitive large solutions to $|F(x, y)| \leqslant h$ is $\ll s$.

Mueller and Schmidt's Theorem

- This is good enough that there's no need to improve this.
- Technique: archimedean Newton polygons

Medium Solution Setup

Bounds on theNumber ofSolutions toThue Equations
Greg Knapp
Introduction
The ligredients
Thue's Result
Solving Thue
Equations
Bounding the
Number ofSolutions
Dependence on h
Dependence onOther Feazures of$F(x, y)$
Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)

There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$,

Solving Thue Equations

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)
There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)

There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

$$
\left|\alpha-\frac{x}{y}\right| \leqslant \frac{K}{y^{n / s}} \quad \text { or } \quad\left|\alpha^{*}-\frac{y}{x}\right|<\frac{K}{x^{n / s}}
$$

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)

There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

$$
\left|\alpha-\frac{x}{y}\right| \leqslant \frac{K}{y^{n / s}} \quad \text { or } \quad\left|\alpha^{*}-\frac{y}{x}\right|<\frac{K}{x^{n / s}}
$$

where K depends on F and h.

Medium Solution Setup

Lemma (Mueller and Schmidt, 1987)

There is a set S of roots of $f(x)=F(x, 1)$ and a set S^{*} of roots of $g(y)=F(1, y)$ both with size $\ll s$ so that for any solution to $|F(x, y)| \leqslant h$ with $|x|,|y|>Y_{S}$, there exists $\alpha \in S$ or $\alpha^{*} \in S^{*}$ so that

$$
\left|\alpha-\frac{x}{y}\right| \leqslant \frac{K}{y^{n / s}} \quad \text { or } \quad\left|\alpha^{*}-\frac{y}{x}\right|<\frac{K}{x^{n / s}}
$$

where K depends on F and h.

Moral

There's a set of $\ll s$ algebraic numbers so that any solution to $|F(x, y)| \leqslant h$ with $x, y>Y_{S}$ gives a rational number $\frac{x}{y}$ or $\frac{y}{x}$ which is close to one of those algebraic numbers.

Counting

Bounds on the
Number of Solutions to Thue Equations

Greg Knapp

Introduction
The liggredients
Thue's Result
Solving Thue
Equations
Bounding the
Number of
Solutions
Dependence on h
Dependence on
Other Features of
$F(x, y)$
Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Counting

Bounds on the
Number of
Solutions to
Thue Equations
Greg Knapp

Introduction
The Ingredients
Thue's Result:
Solving Thue Equations

Bounding the
Number of
Solutions
Dependence on h
Dependence on Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivisio
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Goal

Fix $\alpha \in S$ and count the number of rationals which satisfy

$$
\left|\alpha-\frac{x}{y}\right|<\frac{K}{2 y^{n / s}}
$$

Counting

Goal

Fix $\alpha \in S$ and count the number of rationals which satisfy

$$
\left|\alpha-\frac{x}{y}\right|<\frac{K}{2 y^{n / s}}
$$

Setup

- Recall that a (positive) medium solution has $Y_{S}<x, y<Y_{L}$.

Counting

Goal

Fix $\alpha \in S$ and count the number of rationals which satisfy

$$
\left|\alpha-\frac{x}{y}\right|<\frac{K}{2 y^{n / s}}
$$

Setup

- Recall that a (positive) medium solution has $Y_{S}<x, y<Y_{L}$.
- Enumerate the medium solutions which satisfy the above inequality, and order them so that

$$
Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}
$$

Counting

The Gap Principle

■ Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

Counting

The Gap Principle

Greg Knapp

Introduction

■ Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\frac{K}{y_{i}^{n / s}}>\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right|
$$

Counting

The Gap Principle

Greg Knapp

Introduction

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right|
\end{aligned}
$$

Counting

The Gap Principle

Greg Knapp

Introduction

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right| \\
& \geqslant \frac{1}{y_{i} y_{i+1}}
\end{aligned}
$$

Counting

The Gap Principle

Greg Knapp

Introduction
■ Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right| \\
& \geqslant \frac{1}{y_{i} y_{i+1}}
\end{aligned}
$$

implying that $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$.

Counting

The Gap Principle

Greg Knapp

- Use the fact that if $\frac{x_{i}}{y_{i}}$ and $\frac{x_{i+1}}{y_{i+1}}$ are close to α, they are close to each other:

$$
\begin{aligned}
\frac{K}{y_{i}^{n / s}} & >\left|\frac{x_{i}}{y_{i}}-\frac{x_{i+1}}{y_{i+1}}\right| \\
& =\left|\frac{x_{i} y_{i+1}-x_{i+1} y_{i}}{y_{i} y_{i+1}}\right| \\
& \geqslant \frac{1}{y_{i} y_{i+1}}
\end{aligned}
$$

implying that $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$.
■ This is known as The Gap Principle.

Counting

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t.

Counting

Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue Equations

Bounding the

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t.

Lemma (K., 2023)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{n}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Counting

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t.

Lemma (K., 2023)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{s}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Something more useful

Reducing the above constants into terms of n, s, h, H,

Counting

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t.

Lemma (K., 2023)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{s}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Something more useful

Reducing the above constants into terms of n, s, h, H, using $n \geqslant 3 s$,

Counting

Counting with Gaps

Using $y_{i+1}>\frac{y_{i}^{\frac{n}{s}-1}}{K}$ together with $Y_{S}<y_{0} \leqslant y_{1} \leqslant \cdots \leqslant y_{t}<Y_{L}$, we can find bounds on t.

Lemma (K., 2023)

If $n \geqslant 3 s$ and there are $t+1$ medium solutions associated to α, then

$$
t \leqslant \frac{\log \left[\frac{\log Y_{L} K^{-1 /\left(\frac{n}{s}-2\right)}}{\log Y_{S} K^{-1 /\left(\frac{n}{s}-2\right)}}\right]}{\log \left(\frac{n}{s}-1\right)}
$$

Moreover, this bound is sharp.

Something more useful

Reducing the above constants into terms of n, s, h, H, using $n \geqslant 3 s$, and applying the fact that there are $\ll s$ roots α that we need to care about, we find...

Counting Medium Solutions

Theorem (K., 2023)

The number of primitive medium solutions to $|F(x, y)| \leqslant h$ when $n \geqslant 3 s$ is

$$
\ll s\left(1+\log \left(s+\frac{\log h}{\max (1, \log H)}\right)\right) .
$$

Counting Medium Solutions

Theorem (K., 2023)

The number of primitive medium solutions to $|F(x, y)| \leqslant h$ when $n \geqslant 3 s$ is

$$
\ll s\left(1+\log \left(s+\frac{\log h}{\max (1, \log H)}\right)\right) .
$$

Recall:

Conjecture

If $h \leqslant H^{1-\frac{s}{n}-\rho}$, then the number of primitive solutions to $|F(x, y)| \leqslant h$ is bounded by a function only of s and ρ.

Counting Small Solutions

Bounds on the

Number of
Solutions to
Thue Equations
Greg Knapp

Introduction
The Ingredients
Thue's Result
Solving Thue
Equations
Bounding the
Number of
Solutions
Dependence on h
Dependence on
Other Features of
$F(x, y)$
Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Counting Small Solutions

Challenges

Small solutions make up the bulk of the solutions and are tough to count.

Counting Small Solutions

Challenges

Small solutions make up the bulk of the solutions and are tough to count.

Theorem (Saradha-Sharma, 2017)

When $n>4 s e^{2 \Phi}$, the number of primitive small solutions to $|F(x, y)| \leqslant h$ is

$$
\ll s e^{\Phi} h^{2 / n}
$$

where Φ measures the "sparsity" of F and satisfies $\log ^{3} s \leqslant e^{\Phi} \ll s$.

The Big Picture

Bounds on the
Number of
Solutions to
Thue Equations
Greg Knapp
Bounds on $N(F, h)$

Introduction

The Ingredients
Thue's Result
Solving Thue Equations

Bounding the
Number of Solutions

Dependence on h
Dependence on
Other Features of $F(x, y)$

Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

The Big Picture

Bounds on $N(F, h)$

Introduction
The Ingredients
Thue's Result

- My improvements on the bounds for medium solutions don't yield improvements to known asymptotic bounds on $N(F, h)$.

The Big Picture

Bounds on $N(F, h)$

- My improvements on the bounds for medium solutions don't yield improvements to known asymptotic bounds on $N(F, h)$.
- If combined with improvements for the number of small solutions, however, we would improve the asymptotic bounds on $N(F, h)$.

The Big Picture

Bounds on $N(F, h)$

- My improvements on the bounds for medium solutions don't yield improvements to known asymptotic bounds on $N(F, h)$.
- If combined with improvements for the number of small solutions, however, we would improve the asymptotic bounds on $N(F, h)$.

Specific Cases

When we have explicit bounds on $N(F, h)$, my improvements do yield tighter bounds.

Explicit Bounds for Trinomials

Theorem (Thomas, 2000)
If $F(x, y)=a x^{n}+b x^{k} y^{n-k}+c y^{n}$, there are no more than $C_{1}(n)$ solutions to $|F(x, y)|=1$ where $C_{1}(n)$ is defined by

n	6	7	8	9	$10-11$	$12-16$	$17-37$	$\geqslant 38$
$C_{1}(n)$	136	86	96	62	72	60	56	48

Explicit Bounds for Trinomials

Theorem (Thomas, 2000)
If $F(x, y)=a x^{n}+b x^{k} y^{n-k}+c y^{n}$, there are no more than $C_{1}(n)$ solutions to $|F(x, y)|=1$ where $C_{1}(n)$ is defined by

n	6	7	8	9	$10-11$	$12-16$	$17-37$	$\geqslant 38$
$C_{1}(n)$	136	86	96	62	72	60	56	48

Theorem (K., 2023)

The above theorem is still true with $C_{1}(n)$ replaced by $C_{2}(n)$:

n	6	7	$8-216$	$\geqslant 217$
$C_{2}(n)$	128	80	$C_{1}(n)$	40

Explicit Bounds for Trinomials

Theorem (Thomas, 2000)
If $F(x, y)=a x^{n}+b x^{k} y^{n-k}+c y^{n}$, there are no more than $C_{1}(n)$ solutions to $|F(x, y)|=1$ where $C_{1}(n)$ is defined by

n	6	7	8	9	$10-11$	$12-16$	$17-37$	$\geqslant 38$
$C_{1}(n)$	136	86	96	62	72	60	56	48

Theorem (K., 2023)

The above theorem is still true with $C_{1}(n)$ replaced by $C_{2}(n)$:

n	6	7	$8-216$	$\geqslant 217$
$C_{2}(n)$	128	80	$C_{1}(n)$	40

Question

Is this a good bound?

Trinomial Computations

H	1	2	3	4	5	6	7	8	9	10	\cdots	16
$n=6$	8	6	8	8	6	6	6	6	8	6	\cdots	12
$n=7$	8	6	8	8	6	6	6	6	8	6	\cdots	8
$n=8$	8	6	8	8	6	6	6	6	8	6	\cdots	12
$n=9$	8	6	8	8	6	6	6	6	8	6	\cdots	8
$n=10$	8	6	8	8	6	6	6	6	8	-	\cdots	8
$n=11$	8	6	8	8	6	6	6	6	8	-	\cdots	-
$n=12$	8	6	8	8	6	6	6	-	-	-	\cdots	-
$n=13$	8	6	8	8	6	6	-	-	-	-	\cdots	-
$n=14$	8	6	8	8	6	6	-	-	-	-	\cdots	-
$n=15$	8	6	8	8	6	-	-	-	-	-	\cdots	-
$n=16$	8	6	8	8	6	-	-	-	-	-	\cdots	-
$n=17$	8	6	8	8	-	-	-	-	-	-	\cdots	-

Maximum number of solutions to $|F(x, y)|=1$ for any trinomial of height H and degree n

Thank you!

Bounds on the
Number of
Solutions to
Thue Equations
Greg Knapp

Introduction

The Ingredients
Thue's Result
Solving Thue
Equations
Bounding the
Number of
Solutions
Dependence on h
Dependence on
Other Features of
$F(x, y)$
Results
Counting
Techniques
Solution Subdivision
Large Solutions
Medium Solutions
Small Solutions
All Solutions
Trinomials

Questions?

