Measure rigidity and orbit closure classification of random walks on surfaces

Ping Ngai (Brian) Chung

University of Chicago

July 16, 2020

Given a manifold M, a point $x \in M$ and a semigroup Γ acting on M,

what can we say about:

• the orbit of x under Γ ,

$$\operatorname{Orbit}(x, \Gamma) := \{\varphi(x) \mid \varphi \in \Gamma\}?$$

• the Γ -invariant probability measures ν on M?

Given a manifold M, a point $x \in M$ and a semigroup Γ acting on M,

what can we say about:

• the orbit of x under Γ ,

$$\operatorname{Orbit}(x, \Gamma) := \{\varphi(x) \mid \varphi \in \Gamma\}?$$

• the Γ -invariant probability measures ν on M?

Can we classify all of them?

Given a manifold M, a point $x \in M$ and a semigroup Γ acting on M,

what can we say about:

• the orbit of x under Γ ,

$$\operatorname{Orbit}(x, \Gamma) := \{\varphi(x) \mid \varphi \in \Gamma\}?$$

• the Γ -invariant probability measures ν on M?

When can we classify all of them?

Say $M = S^1 = [0,1]/\sim$, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,

Say
$$M = S^1 = [0, 1] / \sim$$
, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,
 0
 $1/5$
 1

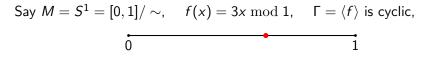
Say
$$M = S^1 = [0, 1] / \sim$$
, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,
 0
 $1/5$
 $3/5$
 1

Say
$$M = S^1 = [0, 1] / \sim$$
, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,

$$\overbrace{0 \quad 1/5 \quad 3/5 \quad 4/5 \quad 1}$$

Say
$$M = S^1 = [0, 1] / \sim$$
, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,
 $0 \quad 1/5 \quad 2/5 \quad 3/5 \quad 4/5 \quad 1$

Say
$$M = S^1 = [0, 1] / \sim$$
, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,
 $0 \quad 1/5 \quad 2/5 \quad 3/5 \quad 4/5 \quad 1$



- If x = p/q is rational, $\operatorname{Orbit}(x, \Gamma) \subset \{0, 1/q, \dots, (q-1)/q\}$ is finite.
- By the pointwise ergodic theorem, we know that for almost every point x ∈ S¹, Orbit(x, Γ) is dense (in fact equidistributed w.r.t. Leb).

Say $M = S^1 = [0, 1] / \sim$, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,

- If x = p/q is rational, $\operatorname{Orbit}(x, \Gamma) \subset \{0, 1/q, \dots, (q-1)/q\}$ is finite.
- By the pointwise ergodic theorem, we know that for almost every point x ∈ S¹, Orbit(x, Γ) is dense (in fact equidistributed w.r.t. Leb).

Say
$$M = S^1 = [0, 1] / \sim$$
, $f(x) = 3x \mod 1$, $\Gamma = \langle f \rangle$ is cyclic,

- If x = p/q is rational, $\operatorname{Orbit}(x, \Gamma) \subset \{0, 1/q, \dots, (q-1)/q\}$ is finite.
- By the pointwise ergodic theorem, we know that for almost every point x ∈ S¹, Orbit(x, Γ) is dense (in fact equidistributed w.r.t. Leb).
- But there are points x ∈ S¹ where Orbit(x, Γ) is neither finite nor dense, for instance for certain x ∈ S¹, the closure of its orbit

 $\overline{\operatorname{Orbit}(x,\Gamma)} =$ middle third Cantor set.

(And many orbit closures of Hausdorff dimension between 0 and 1!)

Furstenberg's $\times 2 \times 3$ problem

Nonetheless, if we take $M = S^1$ and $\Gamma = \langle f, g \rangle$, where

$$f(x) = 2x \mod 1,$$
 $g(x) = 3x \mod 1,$

Nonetheless, if we take $M = S^1$ and $\Gamma = \langle f, g \rangle$, where

$$f(x) = 2x \mod 1, \qquad g(x) = 3x \mod 1,$$

we have the following theorem of Furstenberg:

Theorem (Furstenberg, 1967) For all $x \in S^1$, $Orbit(x, \Gamma)$ is either finite or dense. Nonetheless, if we take $M = S^1$ and $\Gamma = \langle f, g \rangle$, where

$$f(x) = 2x \mod 1, \qquad g(x) = 3x \mod 1,$$

we have the following theorem of Furstenberg:

Theorem (Furstenberg, 1967)

For all $x \in S^1$, $Orbit(x, \Gamma)$ is either finite or dense.

For invariant measures...

Conjecture (Furstenberg, 1967)

Every ergodic Γ -invariant probability measure ν on S^1 is either finitely supported or the Lebesgue measure.

$$f = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \qquad g = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \in SL_2(\mathbb{Z})$$

which acts on $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ by left multiplication.

$$f=egin{pmatrix} 2&1\ 1&1 \end{pmatrix}, \qquad g=egin{pmatrix} 1&1\ 1&2 \end{pmatrix} \in SL_2(\mathbb{Z})$$

which acts on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ by left multiplication. Then $\operatorname{Orbit}(x, \langle f \rangle)$ can be neither finite nor dense.

$$f=egin{pmatrix} 2&1\ 1&1 \end{pmatrix}, \qquad g=egin{pmatrix} 1&1\ 1&2 \end{pmatrix} \in SL_2(\mathbb{Z})$$

which acts on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ by left multiplication. Then $\operatorname{Orbit}(x, \langle f \rangle)$ can be neither finite nor dense. Nonetheless it follows from a theorem of Bourgain-Furman-Lindenstrauss-Mozes that

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, 2007)

- For all $x \in \mathbb{T}^2$, $\operatorname{Orbit}(x, \langle f, g \rangle)$ is either finite or dense.
- Every ergodic Γ-invariant probability measure ν on T² is either finitely supported or the Lebesgue measure.

$$f=egin{pmatrix} 2&1\ 1&1 \end{pmatrix}, \qquad g=egin{pmatrix} 1&1\ 1&2 \end{pmatrix} \in SL_2(\mathbb{Z})$$

which acts on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ by left multiplication. Then $\operatorname{Orbit}(x, \langle f \rangle)$ can be neither finite nor dense. Nonetheless it follows from a theorem of Bourgain-Furman-Lindenstrauss-Mozes that

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, 2007)

- For all $x \in \mathbb{T}^2$, $\operatorname{Orbit}(x, \langle f, g \rangle)$ is either finite or dense.
- Every ergodic Γ-invariant probability measure ν on T² is either finitely supported or the Lebesgue measure.

In fact, the theorem of BFLM classifies stationary measures on \mathbb{T}^d .

Let X be a metric space, G be a group acting continuously on X. Let μ be a probability measure on G.

Definition

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_G g_* \nu \ d\mu(g).$$

i.e. ν is "invariant on average" under the random walk driven by μ .

In fact, the theorem of BFLM classifies stationary measures on \mathbb{T}^d .

Let X be a metric space, G be a group acting continuously on X. Let μ be a probability measure on G.

Definition

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_G g_* \nu \ d\mu(g).$$

i.e. ν is "invariant on average" under the random walk driven by μ . **Previous example:** $X = \mathbb{T}^2$, $G = SL_2(\mathbb{Z})$, $\Gamma = \langle \text{supp } \mu \rangle = \langle A, B \rangle \subset G$,

$$\mu = rac{1}{2} \left(\delta_{\mathcal{A}} + \delta_{\mathcal{B}}
ight), \quad ext{ where } \quad \mathcal{A} = \begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}, \quad \mathcal{B} = \begin{pmatrix} 1 & 1 \ 1 & 2 \end{pmatrix}$$

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_{\mathcal{G}} g_* \nu \ d\mu(g).$$

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_{\mathcal{G}} g_* \nu \ d\mu(g).$$

Basic facts: Let $\Gamma = \langle \text{supp } \mu \rangle \subset G$.

• Every Γ -invariant measure is μ -stationary.

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_{\mathcal{G}} g_* \nu \ d\mu(g).$$

- Every Γ -invariant measure is μ -stationary.
- Every finitely supported μ -stationary measure is Γ -invariant.
- (Choquet-Deny) If Γ is abelian, every μ-stationary measure is Γ-invariant (stiffness).

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_G g_* \nu \ d\mu(g).$$

- Every Γ -invariant measure is μ -stationary.
- Every finitely supported μ -stationary measure is Γ -invariant.
- (Choquet-Deny) If Γ is abelian, every μ-stationary measure is Γ-invariant (stiffness).
- (Kakutani) If X is compact, there exists a μ-stationary measure on X.
 (Even though Γ-invariant measure may not exist for non-amenable Γ!)

A measure ν on X is μ -stationary if

$$\nu = \mu * \nu := \int_G g_* \nu \ d\mu(g).$$

- Every Γ -invariant measure is μ -stationary.
- Every finitely supported μ -stationary measure is Γ -invariant.
- (Choquet-Deny) If Γ is abelian, every μ-stationary measure is Γ-invariant (stiffness).
- (Kakutani) If X is compact, there exists a μ-stationary measure on X.
 (Even though Γ-invariant measure may not exist for non-amenable Γ!)
- Stationary measures are relevant for equidistribution problems.

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, Benoist-Quint)

Let μ be a compactly supported probability measure on $SL_d(\mathbb{Z})$. If $\Gamma = \langle \text{supp } \mu \rangle$ is a Zariski dense subsemigroup of $SL_d(\mathbb{R})$, then

- For all $x \in \mathbb{T}^d$, $\operatorname{Orbit}(x, \Gamma)$ is either finite or dense.
- Every ergodic μ-stationary probability measure ν on T^d is either finitely supported or the Lebesgue measure.
- Every infinite orbit equidistributes on \mathbb{T}^d .

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, Benoist-Quint)

Let μ be a compactly supported probability measure on $SL_d(\mathbb{Z})$. If $\Gamma = \langle \text{supp } \mu \rangle$ is a Zariski dense subsemigroup of $SL_d(\mathbb{R})$, then

- For all $x \in \mathbb{T}^d$, $\operatorname{Orbit}(x, \Gamma)$ is either finite or dense.
- Every ergodic μ-stationary probability measure ν on T^d is either finitely supported or the Lebesgue measure.
- Every infinite orbit equidistributes on \mathbb{T}^d .
- The Zariski density assumption is necessary since the theorem is false for say cyclic Γ generated by a hyperbolic element in SL_d(Z).
- The second conclusion implies that under the given assumptions, every μ-stationary measure is Γ-invariant (i.e. stiffness).

The theorem of Benoist-Quint works more generally for homogeneous spaces G/Λ .

Theorem (Benoist-Quint, 2011)

Let G be a connected simple real Lie group, Λ be a lattice in G, μ be a compactly supported probability measure on G. If $\Gamma = \langle \text{supp } \mu \rangle$ is a Zariski dense subsemigroup of G, then

- For all $x \in G/\Lambda$, $\operatorname{Orbit}(x, \Gamma)$ is either finite or dense.
- Every ergodic μ-stationary probability measure ν on G/Λ is either finitely supported or the Haar measure.
- Every infinite orbit equidistributes on G/Λ .

The theorem of Benoist-Quint works more generally for homogeneous spaces G/Λ .

Theorem (Benoist-Quint, 2011)

Let G be a connected simple real Lie group, Λ be a lattice in G, μ be a compactly supported probability measure on G. If $\Gamma = \langle \text{supp } \mu \rangle$ is a Zariski dense subsemigroup of G, then

- For all $x \in G/\Lambda$, $\operatorname{Orbit}(x, \Gamma)$ is either finite or dense.
- Every ergodic μ-stationary probability measure ν on G/Λ is either finitely supported or the Haar measure.
- Every infinite orbit equidistributes on G/Λ .

More general results in the homogeneous setting by Benoist-Quint (semisimple setting), Eskin-Lindenstrauss (uniform expansion on \mathfrak{g}) etc.

Let *M* be a closed manifold with (normalized) volume measure vol, μ be a probability measure on $\operatorname{Diff}_{\operatorname{vol}}^2(M)$, $\Gamma = \langle \operatorname{supp} \mu \rangle$.

Let *M* be a closed manifold with (normalized) volume measure vol, μ be a probability measure on $\operatorname{Diff}_{\operatorname{vol}}^2(M)$, $\Gamma = \langle \operatorname{supp} \mu \rangle$.

Under what condition on μ and/or Γ do we have that

- For all $x \in M$, $Orbit(x, \Gamma)$ is either finite or dense.
- Every ergodic μ -stationary probability measure ν on M is either finitely supported or vol.
- Every infinite orbit equidistributes on *M*?

Let M be a Riemannian manifold, μ be a probability measure on $\operatorname{Diff}^2_{\operatorname{vol}}(M)$. We say that μ is uniformly expanding if there exists C > 0 and $N \in \mathbb{N}$ such that for all $x \in M$ and nonzero $v \in T_x M$,

$$\int_{\mathrm{Diff}^2_{\mathrm{vol}}(M)}\log\frac{\|D_{\mathsf{x}}f(\mathsf{v})\|}{\|\mathsf{v}\|}d\mu^{(N)}(f)>C>0.$$

Here $\mu^{(N)} := \mu * \mu * \cdots * \mu$ is the *N*-th convolution power of μ .

In other words, the random walk w.r.t. μ expands every vector $v \in T_x M$ at every point $x \in M$ on average (might be contracted by a specific word though!)

Let M be a Riemannian manifold, μ be a probability measure on $\operatorname{Diff}^2_{\operatorname{vol}}(M)$. We say that μ is uniformly expanding if there exists C > 0 and $N \in \mathbb{N}$ such that for all $x \in M$ and nonzero $v \in T_x M$,

$$\int_{\mathrm{Diff}^2_{\mathrm{vol}}(M)}\log\frac{\|D_{\mathsf{x}}f(\mathsf{v})\|}{\|\mathsf{v}\|}d\mu^{(N)}(f)>C>0.$$

Here $\mu^{(N)} := \mu * \mu * \cdots * \mu$ is the *N*-th convolution power of μ .

In other words, the random walk w.r.t. μ expands every vector $v \in T_x M$ at every point $x \in M$ on average (might be contracted by a specific word though!)

Remark: Uniform expansion is an open condition, expected to be generic.

Main result

Theorem (C.)

Let *M* be a closed 2-manifold with volume measure vol. Let μ be a compactly supported probability measure on $\operatorname{Diff}_{\operatorname{vol}}^2(M)$ that is uniformly expanding, and $\Gamma := \langle \operatorname{supp} \mu \rangle$. Then

- For all $x \in M$, $Orbit(x, \Gamma)$ is either finite or dense.
- Every ergodic μ-stationary probability measure ν on M is either finitely supported or vol.

Main result

Theorem (C.)

Let *M* be a closed 2-manifold with volume measure vol. Let μ be a compactly supported probability measure on $\operatorname{Diff}_{\operatorname{vol}}^2(M)$ that is uniformly expanding, and $\Gamma := \langle \operatorname{supp} \mu \rangle$. Then

- For all $x \in M$, $Orbit(x, \Gamma)$ is either finite or dense.
- Every ergodic μ-stationary probability measure ν on M is either finitely supported or vol.

Remark

For M = T² and μ supported on SL₂(Z), if Γ = ⟨supp μ⟩ is Zariski dense in SL₂(R), then μ is uniformly expanding.

Main result

Theorem (C.)

Let *M* be a closed 2-manifold with volume measure vol. Let μ be a compactly supported probability measure on $\operatorname{Diff}_{\operatorname{vol}}^2(M)$ that is uniformly expanding, and $\Gamma := \langle \operatorname{supp} \mu \rangle$. Then

- For all $x \in M$, $Orbit(x, \Gamma)$ is either finite or dense.
- Every ergodic μ-stationary probability measure ν on M is either finitely supported or vol.

Remark

- For M = T² and μ supported on SL₂(Z), if Γ = ⟨supp μ⟩ is Zariski dense in SL₂(ℝ), then μ is uniformly expanding.
- Since uniform expansion is an open condition, so the conclusion holds for small perturbations of Zariski dense toral automorphisms in $\mathrm{Diff}^2_{\mathrm{vol}}(M)$ too.

How hard is it to verify the uniform expansion condition? We checked it in two settings:

- O Discrete perturbation of the standard map (verified by hand)
- Out(F₂)-action on the character variety Hom(F₂, SU(2)) // SU(2) (verified numerically).

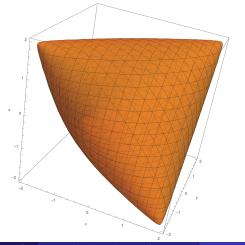
How hard is it to verify the uniform expansion condition? We checked it in two settings:

- O Discrete perturbation of the standard map (verified by hand)
- Out(F₂)-action on the character variety Hom(F₂, SU(2)) // SU(2) (verified numerically).

Application: Out(F2)-action on character variety

The character variety $\text{Hom}(F_2, \text{SU}(2)) /\!\!/ \text{SU}(2)$ can be embedded in \mathbb{R}^3 via trace coordinates, with image given by

$$\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 - xyz - 2 \in [-2, 2]\} \subset \mathbb{R}^3.$$



Ping Ngai (Brian) Chung (UChicago)

Moreover, under the natural action of $Out(F_2)$, the ergodic components are the compact surfaces

$$\{x^2+y^2+z^2-xyz-2=k\}\subset \mathbb{R}^3$$

for $k \in [-2, 2]$, corresponding to relative character varieties Hom_k(F₂, SU(2)) // SU(2). Under such identification, the action of Out(F₂) is generated by two Dehn twists

$$T_X \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ z \\ xz - y \end{pmatrix}, \qquad T_Y \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y \\ yz - x \end{pmatrix}$$

Application: Out(F2)-action on character variety

For k = 1.99, the relative character variety is

$$\{x^2+y^2+z^2-xyz-2=k\}\subset\mathbb{R}^3$$

with maps

 $T_X(x, y, z) = (x, z, xz - y),$ $T_Y(x, y, z) = (z, y, yz - x).$ V _1 2-2

$$\int_{\mathrm{Diff}^2(\mathcal{M})} \log \frac{\|D_P f(v)\|}{\|v\|} d\mu^{(\mathcal{N})}(f) > C > 0.$$

Given the explicit form of both the compact surface and the maps, one can verify uniform expansion numerically:

$$\int_{\mathrm{Diff}^2(\mathcal{M})} \log \frac{\|D_P f(v)\|}{\|v\|} d\mu^{(\mathcal{N})}(f) > C > 0.$$

Given the explicit form of both the compact surface and the maps, one can verify uniform expansion numerically:

• Check UE on a grid on the (compact) unit tangent bundle T^1M using a program,

$$\int_{\mathrm{Diff}^2(\mathcal{M})} \log \frac{\|D_P f(v)\|}{\|v\|} d\mu^{(\mathcal{N})}(f) > C > 0.$$

Given the explicit form of both the compact surface and the maps, one can verify uniform expansion numerically:

- Check UE on a grid on the (compact) unit tangent bundle T¹M using a program,
- ② Extend to nearby points by the smooth dependence of the left hand side on (P, θ) ∈ T¹M.

$$\int_{\mathrm{Diff}^2(\mathcal{M})} \log \frac{\|D_P f(v)\|}{\|v\|} d\mu^{(\mathcal{N})}(f) > C > 0.$$

Given the explicit form of both the compact surface and the maps, one can verify uniform expansion numerically:

- Check UE on a grid on the (compact) unit tangent bundle T¹M using a program,
- ② Extend to nearby points by the smooth dependence of the left hand side on (P, θ) ∈ T¹M.

Time complexity: $O(\lambda^6 A^2)$, where λ, A are C^1 and C^2 norms of f.

Theorem (C.)

For k near 2, $\mu = \frac{1}{2}\delta_{T_X} + \frac{1}{2}\delta_{T_Y}$ is uniformly expanding on $Hom_k(F_2, SU(2)) // SU(2)$.

Corollary

For k near 2, let $X = Hom_k(F_2, SU(2)) / SU(2)$, then

- every $Out(F_2)$ -orbit on X is either finite or dense.
- Every infinite orbit equidistribute on X.
- Every ergodic $Out(F_2)$ -invariant measure on X is either finitely supported or the natural volume measure.

The topological statement was obtained by Previte and Xia for all k ∈ [-2, 2] with a completely different method, using crucially the fact that Out(F₂) is generated by Dehn twists.

- The topological statement was obtained by Previte and Xia for all k ∈ [-2, 2] with a completely different method, using crucially the fact that Out(F₂) is generated by Dehn twists.
- **②** Our method is readily applicable for proper subgroups Γ of $Out(F_2)$, including those without any powers of Dehn twists. It is only limited by computational power.

- The topological statement was obtained by Previte and Xia for all k ∈ [-2, 2] with a completely different method, using crucially the fact that Out(F₂) is generated by Dehn twists.
- **②** Our method is readily applicable for proper subgroups Γ of $Out(F_2)$, including those without any powers of Dehn twists. It is only limited by computational power.
- Are there faster algorithms to verify uniform expansion? Likely.

- The topological statement was obtained by Previte and Xia for all k ∈ [-2,2] with a completely different method, using crucially the fact that Out(F₂) is generated by Dehn twists.
- **②** Our method is readily applicable for proper subgroups Γ of $Out(F_2)$, including those without any powers of Dehn twists. It is only limited by computational power.
- Are there faster algorithms to verify uniform expansion? Likely.

Thank you!

Part II

Proof of main statement

Theorem (Brown-Rodriguez Hertz, 2017)

Let *M* be a closed 2-manifold. Let μ be a measure on $\text{Diff}_{vol}^2(M)$, and $\Gamma := \langle \text{supp } \mu \rangle$. Let ν be an ergodic hyperbolic μ -stationary measure on *M*. Then at least one of the following three possibilities holds:

1 ν is finitely supported.

Theorem (Brown-Rodriguez Hertz, 2017)

- **1** ν is finitely supported.
- 2 $\nu = \operatorname{vol}|_A$ for some positive volume subset $A \subset M$ (local ergodicity).

Theorem (Brown-Rodriguez Hertz, 2017)

- **1** ν is finitely supported.
- 2 $\nu = \operatorname{vol}|_A$ for some positive volume subset $A \subset M$ (local ergodicity).
- Sor ν-a.e. x ∈ M, there exists v ∈ P(T_xM) that is contracted by μ^N-almost every word ω ("Stable distribution is non-random" in ν).

Theorem (Brown-Rodriguez Hertz, 2017)

- **1** ν is finitely supported.
- 2 $\nu = \operatorname{vol}|_A$ for some positive volume subset $A \subset M$ (local ergodicity).
- Solution For ν-a.e. x ∈ M, there exists v ∈ P(T_xM) that is contracted by μ^N-almost every word ω ("Stable distribution is non-random" in ν).
- **1** Uniform expansion (UE) implies hyperbolicity and rules out (3).

Theorem (Brown-Rodriguez Hertz, 2017)

- **1** ν is finitely supported.
- 2 $\nu = \operatorname{vol}|_A$ for some positive volume subset $A \subset M$ (local ergodicity).
- For ν-a.e. x ∈ M, there exists v ∈ P(T_xM) that is contracted by μ^N-almost every word ω ("Stable distribution is non-random" in ν).
- **1** Uniform expansion (UE) implies hyperbolicity and rules out (3).
- O UE and some version of the Hopf argument (related to ideas of Dolgopyat-Krikorian) show that ν = vol in (2) (global ergodicity).

Theorem (Brown-Rodriguez Hertz, 2017)

- **1** ν is finitely supported.
- 2 $\nu = \operatorname{vol}|_A$ for some positive volume subset $A \subset M$ (local ergodicity).
- For ν-a.e. x ∈ M, there exists v ∈ P(T_xM) that is contracted by μ^N-almost every word ω ("Stable distribution is non-random" in ν).
- **1** Uniform expansion (UE) implies hyperbolicity and rules out (3).
- O UE and some version of the Hopf argument (related to ideas of Dolgopyat-Krikorian) show that ν = vol in (2) (global ergodicity).
- UE together with techniques (Margulis function) originated from Eskin-Margulis show that the classification of stationary measures implies equidistribution and orbit closure classification.

Thus uniform expansion is stronger than the assumptions of Brown-Rodriguez Hertz. But in some sense this is best possible.

Proposition (C.)

Let M be a closed 2-manifold. Let μ be a measure on $\operatorname{Diff}_{vol}^2(M)$. Then μ is uniformly expanding if and only if for every ergodic μ -stationary measure ν on M,

- ν is hyperbolic,
- **2** Stable distribution is **not** non-random in ν .

Application: Perturbation of standard map

The Chirikov standard map is a map on $\mathbb{T}^2=\mathbb{R}^2/(2\pi\mathbb{Z})^2$ given by

$$\Phi_L(I,\theta) = (I + L\sin\theta, \theta + I + L\sin\theta)$$

for a parameter L > 0. Under the coordinate change $x = \theta$, $y = \theta - I$, Φ_L conjugates to (by abuse of notation)

$$\Phi_L(x,y)=(L\sin x+2x-y,x),$$

with differential map

$$D\Phi_L = \begin{pmatrix} L\cos x + 2 & -1 \\ 1 & 0 \end{pmatrix}.$$

$$D\Phi_L = \begin{pmatrix} L\cos x + 2 & -1 \\ 1 & 0 \end{pmatrix}.$$

- For $L \gg 1$, Φ_L has strong expansion and contraction of norm $\sim L$ close to the x-direction, except near the (non-invariant) narrow strips near $x = \pm \pi/2$, where it is close to a rotation.
- It is still open whether Φ_L has positive Lyapunov exponent for any specific L.

Blumenthal-Xue-Young considered a random perturbation of the standard map, namely for $\varepsilon > 0$, $\Phi_{L,\omega} := \Phi_L \circ S_\omega$ so that

$$D\Phi_{L,\omega} = egin{pmatrix} L\cos(x+\omega)+2 & -1 \ 1 & 0 \end{pmatrix},$$

where $S_{\omega}(x,y) = (x + \omega \pmod{1}, y), \quad \omega \sim \operatorname{Unif}[-\varepsilon, \varepsilon].$

Theorem (Blumenthal-Xue-Young, 2017)

For $\beta \in (0,1)$ and L large enough, if $\varepsilon \gtrsim L^{-L^{1-\beta}}$, then the top Lyapunov exponent λ_1^{ε} of the random dynamical system $\Phi_{L,\omega}$ with $\omega \sim \text{Unif}[-\varepsilon,\varepsilon]$ satisfies

$$\lambda_1^{arepsilon}\gtrsim \log L.$$

What if we sample the maps with a different distribution? For instance can we replace $\text{Unif}[-\varepsilon,\varepsilon]$ by discrete uniform measure $\text{DiscUnif}_{r,\varepsilon}$ supported on $\{0,\pm\frac{1}{r}\varepsilon,\pm\frac{2}{r}\varepsilon,\ldots,\pm\frac{r-1}{r}\varepsilon\}$ for some positive integer r?

Theorem (C.)

For $\delta \in (0, 1)$, there exists an explicit integer $r_0 = r_0(\delta)$ such that for L large enough, if $\varepsilon \ge L^{-1+\delta}$ and $r \ge r_0(\delta)$, $\operatorname{DiscUnif}_{r,\varepsilon}$ is uniformly expanding with expansion $C \gtrsim \log L$.

Corollary (C.)

For $\delta \in (0, 1)$, there exists an explicit integer $r_0 = r_0(\delta)$ such that for L large enough, if $\varepsilon \ge L^{-1+\delta}$ and $r \ge r_0(\delta)$, then the Lyapunov exponent $\lambda_1^{\varepsilon,\text{disc}}$ of the random dynamical system $\Phi_{L,\omega}$ with $\omega \sim \text{DiscUnif}_{r,\varepsilon}$ satisfies

$$\lambda_1^{\varepsilon, \operatorname{disc}} \gtrsim \log L.$$

Remark: Blumenthal-Xue-Young used crucially the fact that for continuous perturbation, Lebesgue is the only stationary measure. This is not always true for discrete perturbation. In fact a consequence of our main theorem is that the only non-atomic stationary measure is Lebesgue.

General criterion for uniform expansion

Verify uniform expansion

Recall that μ is uniformly expanding if there exists C > 0 and $N \in \mathbb{N}$ such that for all $x \in M$ and $v \in T_x M$,

$$\int_{\mathrm{Diff}^2(\mathcal{M})}\log\frac{\|D_xf(v)\|}{\|v\|}d\mu^{(\mathcal{N})}(f)>C>0.$$

Obstructions to uniform expansion:

Verify uniform expansion

Recall that μ is uniformly expanding if there exists C > 0 and $N \in \mathbb{N}$ such that for all $x \in M$ and $v \in T_x M$,

$$\int_{\mathrm{Diff}^2(M)}\log\frac{\|D_xf(v)\|}{\|v\|}d\mu^{(N)}(f)>C>0.$$

Obstructions to uniform expansion:

 Clustering of contracting directions: If the contracting directions θ_{Dxf} ∈ T¹_xM of a few maps D_xf are "close together" on the circle T¹_xM, they may get contracted "on average". Recall that μ is uniformly expanding if there exists C > 0 and $N \in \mathbb{N}$ such that for all $x \in M$ and $v \in T_x M$,

$$\int_{\mathrm{Diff}^2(\mathcal{M})}\log\frac{\|D_xf(v)\|}{\|v\|}d\mu^{(N)}(f)>C>0.$$

Obstructions to uniform expansion:

- Clustering of contracting directions: If the contracting directions θ_{Dxf} ∈ T¹_xM of a few maps D_xf are "close together" on the circle T¹_xM, they may get contracted "on average".
- 2 Rotation regions:

On regions where the maps are close to a rotation, vectors that are expanded may get rotated to contracting directions after a few iterations.

Theorem (C.)

For all $\lambda_{\max} > 0$, $\lambda_{\operatorname{crit}} > 0$, and $\varepsilon > 0$ with $\varepsilon^{-3/2} \leq \lambda_{\operatorname{crit}} \leq \lambda_{\max}$, there exists explicit $\eta = \eta(\lambda_{\operatorname{crit}}, \lambda_{\max}, \varepsilon) \in (0, 1)$ such that if for all $x \in M, \theta \in T_x^1 M$,

$$\mu(\{f: d(heta_{D_x f}, heta) > arepsilon ext{ and } \lambda_{D_x f} > \lambda_{ ext{crit}}\}) > \eta,$$

and $\lambda_{D_x f} \leq \lambda_{\max}$ μ -a.s., then μ is uniformly expanding.

Intuitively, if at every point $(x, \theta) \in T^1M$,

- () the norms of most maps are close (govern by $\lambda_{\max}, \lambda_{\mathrm{crit}}$)
- 2 most maps are bounded away from a rotation (by $\lambda_{\rm crit}$),
- **③** the contracting directions are "evenly" distributed (by ε),

then μ is uniformly expanding.