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Setting

Given a manifold M, a point x ∈ M and a semigroup Γ acting on M,

what can we say about:

the orbit of x under Γ,

Orbit(x , Γ) := {ϕ(x) | ϕ ∈ Γ}?

the Γ-invariant probability measures ν on M?

Can we classify all of them?
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Circle

Say M = S1 = [0, 1]/ ∼, f (x) = 3x mod 1, Γ = 〈f 〉 is cyclic,

0 1

If x = p/q is rational, Orbit(x , Γ) ⊂ {0, 1/q, . . . , (q − 1)/q} is finite.

By the pointwise ergodic theorem, we know that for almost every
point x ∈ S1, Orbit(x , Γ) is dense (in fact equidistributed w.r.t. Leb).

But there are points x ∈ S1 where Orbit(x , Γ) is neither finite nor
dense, for instance for certain x ∈ S1, the closure of its orbit

Orbit(x , Γ) = middle third Cantor set.

(And many orbit closures of Hausdorff dimension between 0 and 1!)
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Furstenberg’s ×2× 3 problem

Nonetheless, if we take M = S1 and Γ = 〈f , g〉, where

f (x) = 2x mod 1, g(x) = 3x mod 1,

we have the following theorem of Furstenberg:

Theorem (Furstenberg, 1967)

For all x ∈ S1, Orbit(x , Γ) is either finite or dense.

For invariant measures...

Conjecture (Furstenberg, 1967)

Every ergodic Γ-invariant probability measure ν on S1 is either finitely
supported or the Lebesgue measure.
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Free group action on 2-torus

For dimM = 2, one observes similar phenomenon. Say M = T2, and
Γ = 〈f , g〉 with

f =

(
2 1
1 1

)
, g =

(
1 1
1 2

)
∈ SL2(Z)

which acts on T2 = R2/Z2 by left multiplication.

Then Orbit(x , 〈f 〉) can be neither finite nor dense. Nonetheless it follows
from a theorem of Bourgain-Furman-Lindenstrauss-Mozes that

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, 2007)

For all x ∈ T2, Orbit(x , 〈f , g〉) is either finite or dense.

Every ergodic probability measure ν on T2 is either finitely supported
or the Lebesgue measure.
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Stationary measure

In fact, the theorem of BFLM classifies stationary measures on Td .

Let X be a metric space, G be a group acting continuously on X . Let µ
be a probability measure on G .

Definition

A measure ν on X is µ-stationary if

ν = µ ∗ ν :=

∫
G
g∗ν dµ(g).

i.e. ν is “invariant on average” under the random walk driven by µ.

Previous example: X = T2,G = SL2(Z), Γ = 〈supp µ〉 = 〈A,B〉 ⊂ G ,

µ =
1

2
(δA + δB) , where A =

(
2 1
1 1

)
, B =

(
1 1
1 2

)
.
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Stationary measure

Definition

A measure ν on X is µ-stationary if

ν = µ ∗ ν :=

∫
G
g∗ν dµ(g).

Basic facts: Let Γ = 〈supp µ〉 ⊂ G .

Every Γ-invariant measure is µ-stationary.

Every finitely supported µ-stationary measure is Γ-invariant.

(Choquet-Deny) If Γ is abelian, every µ-stationary measure is
Γ-invariant (stiffness).

(Kakutani) If X is compact, there exists a µ-stationary measure on X .
(Even though Γ-invariant measure may not exist for non-amenable Γ!)

Stationary measures are relevant for equidistribution problems.
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Zariski dense toral automorphism

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, Benoist-Quint)

Let µ be a compactly supported probability measure on SLd(Z).
If Γ = 〈supp µ〉 is a Zariski dense subsemigroup of SLd(R), then

For all x ∈ Td , Orbit(x , Γ) is either finite or dense.

Every ergodic µ-stationary probability measure ν on Td is either
finitely supported or the Lebesgue measure.

Every infinite orbit equidistributes on Td .

The Zariski density assumption is necessary since the theorem is false
for say cyclic Γ generated by a hyperbolic element in SLd(Z).

The second conclusion implies that under the given assumptions,
every µ-stationary measure is Γ-invariant (i.e. stiffness).
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Homogeneous Setting

The theorem of Benoist-Quint works more generally for homogeneous
spaces G/Λ.

Theorem (Benoist-Quint, 2011)

Let G be a connected simple real Lie group, Λ be a lattice in G ,
µ be a compactly supported probability measure on G .
If Γ = 〈supp µ〉 is a Zariski dense subsemigroup of G , then

For all x ∈ G/Λ, Orbit(x , Γ) is either finite or dense.

Every ergodic µ-stationary probability measure ν on G/Λ is either
finitely supported or the Haar measure.

Every infinite orbit equidistributes on G/Λ.

More general results in the homogeneous setting by Benoist-Quint
(semisimple setting), Eskin-Lindenstrauss (uniform expansion on g) etc.
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Non-homogeneous setting

Let M be a closed manifold with (normalized) volume measure vol,
µ be a probability measure on Diff2

vol(M), Γ = 〈supp µ〉.

Under what condition on µ and/or Γ do we have that

For all x ∈ M, Orbit(x , Γ) is either finite or dense.

Every ergodic µ-stationary probability measure ν on M is either
finitely supported or vol.

Every infinite orbit equidistributes on M?
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Uniform expansion

Definition

Let M be a Riemannian manifold, µ be a probability measure on
Diff2

vol(M). We say that µ is uniformly expanding if there exists C > 0
and N ∈ N such that for all x ∈ M and nonzero v ∈ TxM,∫

Diff2
vol(M)

log
‖Dx f (v)‖
‖v‖

dµ(N)(f ) > C > 0.

Here µ(N) := µ ∗ µ ∗ · · · ∗ µ is the N-th convolution power of µ.

In other words, the random walk w.r.t. µ expands every vector v ∈ TxM
at every point x ∈ M on average (might be contracted by a specific word
though!)

Remark: Uniform expansion is an open condition, expected to be generic.
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Main result

Theorem (C.)

Let M be a closed 2-manifold with volume measure vol. Let µ be a
compactly supported probability measure on Diff2

vol(M) that is uniformly
expanding, and Γ := 〈supp µ〉. Then

For all x ∈ M, Orbit(x , Γ) is either finite or dense.

Every ergodic µ-stationary probability measure ν on M is either
finitely supported or vol.

Remark

For M = T2 and µ supported on SL2(Z), if Γ = 〈supp µ〉 is Zariski
dense in SL2(R), then µ is uniformly expanding.

Since uniform expansion is an open condition, so the conclusion holds
for small perturbations of Zariski dense toral automorphisms in
Diff2

vol(M) too.
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Verify uniform expansion

How hard is it to verify the uniform expansion condition? We checked it in
two settings:

1 Discrete perturbation of the standard map (verified by hand)

2 Out(F2)-action on the character variety Hom(F2, SU(2)) // SU(2)
(verified numerically).
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Application: Out(F2)-action on character variety

The character variety Hom(F2, SU(2)) // SU(2) can be embedded in R3 via
trace coordinates, with image given by

{(x , y , z) ∈ R3 | x2 + y2 + z2 − xyz − 2 ∈ [−2, 2]} ⊂ R3.
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Application: Out(F2)-action on character variety

Moreover, under the natural action of Out(F2), the ergodic components
are the compact surfaces

{x2 + y2 + z2 − xyz − 2 = k} ⊂ R3

for k ∈ [−2, 2], corresponding to relative character varieties
Homk(F2,SU(2)) // SU(2). Under such identification, the action of
Out(F2) is generated by two Dehn twists

TX

x
y
z

 =

 x
z

xz − y

 , TY

x
y
z

 =

 z
y

yz − x

 .
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Application: Out(F2)-action on character variety

For k = 1.99, the relative character variety is

{x2 + y2 + z2 − xyz − 2 = k} ⊂ R3

with maps

TX (x , y , z) = (x , z , xz − y), TY (x , y , z) = (z , y , yz − x).
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Application: Out(F2)-action on character variety

Recall that uniform expansion means that there exists C > 0 and N ∈ N
such that for all P ∈ M and v ∈ TPM,∫

Diff2(M)
log
‖DP f (v)‖
‖v‖

dµ(N)(f ) > C > 0.

Given the explicit form of both the compact surface and the maps, one
can verify uniform expansion numerically:

1 Check UE on a grid on the (compact) unit tangent bundle T 1M
using a program,

2 Extend to nearby points by the smooth dependence of the left hand
side on (P, θ) ∈ T 1M.

Time complexity: O(λ6A2), where λ,A are C 1 and C 2 norms of f .
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Application: Out(F2)-action on character variety

Theorem (C.)

For k near 2, µ = 1
2δTX

+ 1
2δTY

is uniformly expanding on
Homk(F2,SU(2)) // SU(2).

Corollary

For k near 2, let X = Homk(F2, SU(2)) // SU(2), then

every Out(F2)-orbit on X is either finite or dense.

Every infinite orbit equidistribute on X .

Every ergodic Out(F2)-invariant measure on X is either finitely
supported or the natural volume measure.
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Application: Out(F2)-action on character variety

Remark:

1 The topological statement was obtained by Previte and Xia for all
k ∈ [−2, 2] with a completely different method, using crucially the
fact that Out(F2) is generated by Dehn twists.

2 Our method is readily applicable for proper subgroups Γ of Out(F2),
including those without any powers of Dehn twists. It is only limited
by computational power.

3 Are there faster algorithms to verify uniform expansion? Likely.

Thank you!
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Part II
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Proof of main statement
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Proof using result of Brown and Rodriguez Hertz

Theorem (Brown-Rodriguez Hertz, 2017)

Let M be a closed 2-manifold. Let µ be a measure on Diff2
vol(M), and

Γ := 〈supp µ〉. Let ν be an ergodic hyperbolic µ-stationary measure on
M. Then at least one of the following three possibilities holds:

1 ν is finitely supported.

2 ν = vol|A for some positive volume subset A ⊂ M (local ergodicity).

3 For ν-a.e. x ∈ M, there exists v ∈ P(TxM) that is contracted by
µN-almost every word ω (“Stable distribution is non-random” in ν).

1 Uniform expansion (UE) implies hyperbolicity and rules out (3).
2 UE and some version of the Hopf argument (related to ideas of

Dolgopyat-Krikorian) show that ν = vol in (2) (global ergodicity).
3 UE together with techniques (Margulis function) originated from

Eskin-Margulis show that the classification of stationary measures
implies equidistribution and orbit closure classification.
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Result of Brown and Rodriguez Hertz

Thus uniform expansion is stronger than the assumptions of
Brown-Rodriguez Hertz. But in some sense this is best possible.

Proposition (C.)

Let M be a closed 2-manifold. Let µ be a measure on Diff2
vol(M). Then µ

is uniformly expanding if and only if for every ergodic µ-stationary measure
ν on M,

1 ν is hyperbolic,

2 Stable distribution is not non-random in ν.
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Application: Perturbation of standard map
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Application: Perturbation of standard map

The Chirikov standard map is a map on T2 = R2/(2πZ)2 given by

ΦL(I , θ) = (I + L sin θ, θ + I + L sin θ)

for a parameter L > 0. Under the coordinate change x = θ, y = θ − I ,
ΦL conjugates to (by abuse of notation)

ΦL(x , y) = (L sin x + 2x − y , x),

with differential map

DΦL =

(
L cos x + 2 −1

1 0

)
.
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Application: Perturbation of standard map

DΦL =

(
L cos x + 2 −1

1 0

)
.

For L� 1, ΦL has strong expansion and contraction of norm ∼ L
close to the x-direction, except near the (non-invariant) narrow strips
near x = ±π/2, where it is close to a rotation.

It is still open whether ΦL has positive Lyapunov exponent for any
specific L.
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Application: Perturbation of standard map

Blumenthal-Xue-Young considered a random perturbation of the standard
map, namely for ε > 0, ΦL,ω := ΦL ◦ Sω so that

DΦL,ω =

(
L cos(x + ω) + 2 −1

1 0

)
,

where Sω(x , y) = (x + ω(mod1), y), ω ∼ Unif[−ε, ε].

Theorem (Blumenthal-Xue-Young, 2017)

For β ∈ (0, 1) and L large enough, if ε & L−L1−β
, then the top Lyapunov

exponent λε1 of the random dynamical system ΦL,ω with ω ∼ Unif[−ε, ε]
satisfies

λε1 & log L.
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Application: Perturbation of standard map

What if we sample the maps with a different distribution? For instance
can we replace Unif[−ε, ε] by discrete uniform measure DiscUnifr ,ε
supported on {0,±1

r ε,±
2
r ε, . . . ,±

r−1
r ε} for some positive integer r?

Theorem (C.)

For δ ∈ (0, 1), there exists an explicit integer r0 = r0(δ) such that for L
large enough, if ε ≥ L−1+δ and r ≥ r0(δ), DiscUnifr ,ε is uniformly
expanding with expansion C & log L.
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Application: Perturbation of standard map

Corollary (C.)

For δ ∈ (0, 1), there exists an explicit integer r0 = r0(δ) such that for L
large enough, if ε ≥ L−1+δ and r ≥ r0(δ), then the Lyapunov exponent

λε,disc
1 of the random dynamical system ΦL,ω with ω ∼ DiscUnifr ,ε satisfies

λε,disc
1 & log L.

Remark: Blumenthal-Xue-Young used crucially the fact that for
continuous perturbation, Lebesgue is the only stationary measure. This is
not always true for discrete perturbation. In fact a consequence of our
main theorem is that the only non-atomic stationary measure is Lebesgue.
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General criterion for uniform expansion
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Verify uniform expansion

Recall that µ is uniformly expanding if there exists C > 0 and N ∈ N such
that for all x ∈ M and v ∈ TxM,∫

Diff2(M)
log
‖Dx f (v)‖
‖v‖

dµ(N)(f ) > C > 0.

Obstructions to uniform expansion:

1 Clustering of contracting directions:
If the contracting directions θDx f ∈ T 1

xM of a few maps Dx f are
“close together” on the circle T 1

xM, they may get contracted “on
average”.

2 Rotation regions:
On regions where the maps are close to a rotation, vectors that are
expanded may get rotated to contracting directions after a few
iterations.
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A general criterion for uniform expansion

Theorem (C.)

For all λmax > 0, λcrit > 0, and ε > 0 with ε−3/2 . λcrit ≤ λmax, there
exists explicit η = η(λcrit, λmax, ε) ∈ (0, 1) such that if for all
x ∈ M, θ ∈ T 1

xM,

µ({f : d(θDx f , θ) > ε and λDx f > λcrit}) > η,

and λDx f ≤ λmax µ-a.s., then µ is uniformly expanding.

Intuitively, if at every point (x , θ) ∈ T 1M,

1 the norms of most maps are close (govern by λmax, λcrit)

2 most maps are bounded away from a rotation (by λcrit),

3 the contracting directions are “evenly” distributed (by ε),

then µ is uniformly expanding.
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