Oscillation results for the summatory functions of fake mu's

Chi Hoi (Kyle) Yip

University of British Columbia
(Joint work with Greg Martin)

Comparative Prime Number Theory Symposium Jun 20, 2024

Fake μ 's

Recently, Martin, Mossinghoff, and Trudgian (2023) investigated comparative number theoretic results for a family of arithmetic functions called "fake μ 's":

Definition (Martin, Mossinghoff, and Trudgian (2023))

An arithmetic function f is a fake μ if:

- f is a multiplicative function;
- For each positive integer $j, f\left(p^{j}\right)=\varepsilon_{j} \in\{-1,0,1\}$ holds for all primes p.
We identify f with the defining sequence $\left(\varepsilon_{j}\right)_{j=1}^{\infty}$.

Question

What can say about the oscillation for the summatory function of a fake $m u$, that is, $\sum_{n \leq x} f(n)$?

Mertens conjecture

- Let $\mu(n)$ be the Möbius function, and let $M(x)=\sum_{n \leq x} \mu(n)$.
- In 1897, Mertens conjectured $|M(x)| \leq \sqrt{x}$ for all $x \geq 1$; this was known as Mertens' conjecture.
- This conjecture was first disproved by Odlyzko and te Riele (1985).
- Hurst (2018):

$$
\liminf _{x \rightarrow \infty} \frac{M(x)}{\sqrt{x}}<-1.837625 \text { and } \quad \limsup _{x \rightarrow \infty} \frac{M(x)}{\sqrt{x}}>1.826054
$$

- μ is a fake μ ! Indeed, the corresponding sequence $\left(\varepsilon_{j}\right)_{j=1}^{\infty}$ satisfies $\varepsilon_{1}=-1$ and $\varepsilon_{j}=0$ for $j \geq 2$.

Pólya's problem

- Let $\lambda(n)=(-1)^{\Omega(n)}$ be the Liouville function, where $\Omega(n)$ is the number of prime factors of n counted with multiplicity.
- Let $L(x)=\sum_{n \leq x} \lambda(n)$.
- Pólya (1919) asked if $L(x) \leq 0$ holds for all x; this was known as the Pólya problem, often mistakenly named as Pólya's conjecture.
- The problem was first resolved in negative by Haselgrove (1958)
- Mossinghoff and Trudgian (2017):

$$
\liminf _{x \rightarrow \infty} \frac{L(x)}{\sqrt{x}}<-2.3723 \text { and } \quad \limsup _{x \rightarrow \infty} \frac{L(x)}{\sqrt{x}}>1.0028
$$

- λ is a fake μ : the corresponding sequence $\left(\varepsilon_{j}\right)_{j=1}^{\infty}$ satisfies $\varepsilon_{j}=(-1)^{j}$.

ABCPNT

- Mertens' conjecture and the Pólya problem motivated substantial work in comparative prime number theory.
- An annotated bibliography for comparative prime number theory (ABCPNT) [arXiv:2309.08729]
- Written by Greg Martin and a group of students in UBC.
- So far, 330 papers, 98 pages.
- Record every publication on the topic of comparative prime number theory together with a summary of its results, use a unified system of notation for the quantities being studied and for the hypotheses under which results are obtained.
- Send an email to Greg by June 30 if you have suggestions or comments!

Tanaka's Möbius function

- Tanaka's Möbius function: for integers $k \geq 2$, Tanaka (1980) defined the generalized Möbius function $\mu_{k}(n)$ to be $\mu_{k}(n)=(-1)^{\Omega(n)}$ if n is k-free and $\mu_{k}(n)=0$ otherwise. Note that $\mu_{2}=\mu$, and $\mu_{\infty}=\lambda$.
- Let $M_{k}(x)=\sum_{n \leq x} \mu_{k}(n)$. Tanaka showed that $M_{k}(x)-B_{k} \sqrt{x}=\Omega_{ \pm}(\sqrt{x})$.

Theorem (Martin, Mossinghoff, and Trudgian (2023))

If f is a fake μ with $\varepsilon_{1}=-1$ and $\varepsilon_{2}=1$, then its summatory function $F(x)$ satisfies

$$
F(x)-b \sqrt{x}=\Omega_{ \pm}(\sqrt{x})
$$

where b is twice the residue at $\frac{1}{2}$ of the Dirichlet series corresponding to $f(n)$.

They remarked that "a function with no bias at scale \sqrt{x} could well see one at a smaller scale".

More fake μ 's: k-free and k-full

- Indicator of k-free numbers: $\varepsilon_{j}=1$ for $j<k$ and $\varepsilon_{j}=0$ for $j \geq k$.
- Let $Q_{k}(x)$ be the number of k-free numbers up to x.
- $R_{k}(x)=Q_{k}(x)-x / \zeta(k)$.
- It is well-known that $R_{k}(x)=\Omega_{ \pm}\left(x^{1 / 2 k}\right)$.
- Indicator of k-full numbers: $\varepsilon_{j}=0$ for $j<k$ and $\varepsilon_{j}=1$ for $j \geq k$.
- Let $N_{k}(x)$ be the number of k-full numbers up to x.
- It is known that $N_{k}(x)$ admits the asymptotic formula of the form

$$
N_{k}(x)=\sum_{k \leq j \leq 4 k+4} b_{j} x^{1 / j}+\Delta_{k}(x)
$$

- Bateman and Grosswald (1958)*: $\Delta_{k}(x)=\Omega\left(x^{1 /(4 k+4)}\right)$.

Main result

Theorem (Martin, Y., 2024+)

Let f be a fake μ with the critical index ℓ. Then its summatory function

$$
F(x)-\sum_{j=1}^{2 \ell} \operatorname{Res}\left(T \cdot \frac{x^{s}}{s}, \frac{1}{j}\right)=\Omega_{ \pm}\left(x^{\frac{1}{2 \ell}}\right)
$$

- Most residues on the above equation are probably simply 0
- The lower bound can be improved by a power of $\log x$ in certain cases. *Exceptions:
- $\varepsilon_{j} \equiv 1$ and $\varepsilon_{j} \equiv 0$ (the identity function and the indicator function of $n=1$, respectively).
- We also need to exclude the indicator function of k-th powers for $k \geq 2$, that is, $\varepsilon_{j}=1$ if $k \mid j$ and $\varepsilon_{j}=0$ otherwise.
- In these three cases, there is no oscillation result.

Critical index

- Given a fake μ function f defined via the sequence $\left(\varepsilon_{j}\right)_{j=1}^{\infty}$.
- Let

$$
T(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

- If for $\sigma>1$, we can write

$$
\begin{equation*}
T(s)=\frac{\prod_{j=1}^{\ell-1} \zeta(j s)^{b_{j}}}{\zeta(\ell s)^{b_{\ell}}} V(s) \tag{1}
\end{equation*}
$$

where $b_{1}, b_{2}, \ldots, b_{\ell-1}$ are non-negative integers, b_{ℓ} is a positive integer, and $V(s)$ is of the form

$$
V(s)=\prod_{p}\left(1+\sum_{j \geq 2 \ell+1} \frac{\eta_{j}}{p^{j} s}\right),
$$

then the critical index of f is ℓ.

Outline of the proof: main term

For $\sigma>1$, we can write

$$
\begin{equation*}
T(s)=U(s) \cdot \prod_{j=1}^{2 \ell} \zeta(j s)^{a_{j}} \tag{2}
\end{equation*}
$$

- $a_{\ell}<0$ and $a_{j}=0$ for $1 \leq j<\ell$.
- $U(s)$ analytic for $\sigma>\frac{1}{2 \ell+1}$.
- Real poles with real parts at least $\frac{1}{2 \ell}$ can only possibly occur at $s=1, \frac{1}{2}, \cdots, \frac{1}{2 \ell}$.
- They contribute to the main term.

Outline of the proof: error term

Proposition (Martin, Y., 2024+)

There is zero ρ of ζ such that $\Re(\rho) \geq \frac{1}{2}$ and

$$
\begin{equation*}
U\left(\frac{\rho}{\ell}\right) \cdot \prod_{\substack{1 \leq j \leq 2 \ell \\ j \neq \ell}} \zeta\left(\frac{j \rho}{\ell}\right) \neq 0 \tag{3}
\end{equation*}
$$

- This guarantees that ρ / ℓ is indeed a pole of $T(s)$, which contributions to the oscillation of the error term.
- Apply Landau's theorem to get the Omega result.
- Proof: zero density estimate+ reduction to truncated Euler products+ Landau's formula.

Example

- Consider the case $\varepsilon_{1}=-1$ and $\varepsilon_{2}=1$.

$$
T(s)=\frac{U(s) \zeta(2 s)}{\zeta(s)}, \quad U(s)=\prod_{p}\left(1+\sum_{j \geq 3} \frac{\varepsilon_{j-1}+\varepsilon_{j}}{p^{j s}}\right)
$$

- The critical index is $\ell=1$.
- Suffices to show $U\left(\rho_{1}\right) \zeta\left(2 \rho_{1}\right) \neq 0$, where $\rho_{1} \approx \frac{1}{2}+14.134725 i$.
- Suffices to show $U\left(\rho_{1}\right) \neq 0$
- This can be done using the triangle inequality via case-by-case analysis.

Algorithm to compute the critical index

$c_{1} \leftarrow$ the smallest i such that $\varepsilon_{i} \neq 0$
if $\varepsilon_{c_{1}}=-1$ then
$M \leftarrow 0$
$\ell \leftarrow c_{1}$
return ℓ
$m \leftarrow 1$
while true do

```
    \(j \leftarrow c_{m}+1\)
    while true do
        \(n_{j} \leftarrow\) the number of representations of \(j\) from \(\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}\)
        if \(n_{j}=0\) and \(\varepsilon_{j}=1\) then
                \(c_{m+1} \leftarrow j\)
            break
        if \(n_{j}>\varepsilon_{j}\) then
            \(M \leftarrow m\)
            \(\ell \leftarrow j\)
            return \(\ell\)
        \(j \leftarrow j+1\)
    \(m \leftarrow m+1\)
```


Factorization

Theorem (Martin, Y., 2024+)

We have

$$
\begin{equation*}
T(s)=U(s) \cdot \frac{\prod_{j=1}^{M} \zeta\left(c_{j} s\right)}{\zeta(\ell s)^{n_{\ell}-\varepsilon_{\ell}}} \cdot \prod_{j=\ell+1}^{2 \ell} \zeta(j s)^{a_{j}} \tag{4}
\end{equation*}
$$

where

$$
a_{j}=\left\{\begin{array}{ll}
\sum_{l \subset[M]}(-1)^{\# \prime} \varepsilon_{j-\sum_{i \in I} c_{i}}, & \ell+1 \leq j \leq 2 \ell-1 \tag{5}\\
-\frac{\left(\varepsilon_{\ell}-n_{\ell}\right)^{2}+\varepsilon_{\ell}-n_{\ell}}{2}+\sum_{l \subset[M]}(-1)^{\# \prime} \varepsilon_{2 \ell-\sum_{i \in I} c_{i}} & j=2 \ell
\end{array},\right.
$$

and $U(s)$ is analytic for $\sigma>\frac{1}{2 \ell+1}$.
$F(x)-\sum_{j=1}^{M} \operatorname{Res}\left(T \cdot \frac{x^{s}}{s}, \frac{1}{c_{j}}\right)-\sum_{j=\ell+1}^{2 \ell} \operatorname{Res}\left(T \cdot \frac{x^{s}}{s}, \frac{1}{j}\right)=\Omega_{ \pm}\left(x^{\frac{1}{2 \ell}}(\log x)^{n_{\ell}-\varepsilon_{\ell}-1}\right)$.

Thank you for your attention!

