Joint distribution of central values and orders of Sha groups of quadratic twists of an elliptic curve

Peng-Jie Wong

National Sun Yat-Sen University

Comparative Prime Number Theory Symposium
June 17, 2024

Table of Contents

(1) L-functions of quadratic twists of elliptic curves, related results, and conjectures
(2) Some key ingredients of the proof

L-functions of quadratic twists of elliptic curves
For an elliptic curve E / \mathbb{Q} of conductor $N=N_{E}$, the associated Hasse-Weil L-function is

$$
L(s, E)=\sum_{n=1}^{\infty} \frac{\lambda_{E}(n)}{n^{s}} \quad \text { for } \quad \mathfrak{R e}(s)>1
$$

where $\left|\lambda_{E}(n)\right| \leq d_{2}(n)$. This L-function extends to an entire function and satisfies

$$
\Lambda(s, E):=\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma\left(s+\frac{1}{2}\right) L(s, E)=\epsilon_{E} \Lambda(1-s, E) \quad \text { with } \quad \epsilon_{E}= \pm 1 \text {. }
$$

L-functions of quadratic twists of elliptic curves
For an elliptic curve E / \mathbb{Q} of conductor $N=N_{E}$, the associated Hasse-Weil L-function is

$$
L(s, E)=\sum_{n=1}^{\infty} \frac{\lambda_{E}(n)}{n^{s}} \quad \text { for } \quad \mathfrak{R e}(s)>1
$$

where $\left|\lambda_{E}(n)\right| \leq d_{2}(n)$. This L-function extends to an entire function and satisfies

$$
\Lambda(s, E):=\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma\left(s+\frac{1}{2}\right) L(s, E)=\epsilon_{E} \Lambda(1-s, E) \quad \text { with } \quad \epsilon_{E}= \pm 1
$$

For any fundamental discriminant d coprime to $2 N, E_{d}$ will stand for the quadratic twist of E by $\chi_{d}=\left(\frac{d}{.}\right)$. The associated twisted L-function is

$$
L\left(s, E_{d}\right)=\sum_{n=1}^{\infty} \frac{\lambda_{E}(n) \chi_{d}(n)}{n^{s}}
$$

As $(d, N)=1$, the conductor of E_{d} is $N d^{2}$, and one knows
$\Lambda\left(s, E_{d}\right):=\left(\frac{\sqrt{N}|d|}{2 \pi}\right)^{s} \Gamma\left(s+\frac{1}{2}\right) L\left(s, E_{d}\right)=\epsilon_{E}(d) \Lambda\left(1-s, E_{d}\right) \quad$ with $\quad \epsilon_{E}(d)=\epsilon_{E} \chi_{d}(-N)$.

L-functions of quadratic twists of elliptic curves
For an elliptic curve E / \mathbb{Q} of conductor $N=N_{E}$, the associated Hasse-Weil L-function is

$$
L(s, E)=\sum_{n=1}^{\infty} \frac{\lambda_{E}(n)}{n^{s}} \quad \text { for } \quad \mathfrak{R e}(s)>1
$$

where $\left|\lambda_{E}(n)\right| \leq d_{2}(n)$. This L-function extends to an entire function and satisfies

$$
\Lambda(s, E):=\left(\frac{\sqrt{N}}{2 \pi}\right)^{s} \Gamma\left(s+\frac{1}{2}\right) L(s, E)=\epsilon_{E} \Lambda(1-s, E) \quad \text { with } \quad \epsilon_{E}= \pm 1
$$

For any fundamental discriminant d coprime to $2 N, E_{d}$ will stand for the quadratic twist of E by $\chi_{d}=\left(\frac{d}{.}\right)$. The associated twisted L-function is

$$
L\left(s, E_{d}\right)=\sum_{n=1}^{\infty} \frac{\lambda_{E}(n) \chi_{d}(n)}{n^{s}}
$$

As $(d, N)=1$, the conductor of E_{d} is $N d^{2}$, and one knows
$\Lambda\left(s, E_{d}\right):=\left(\frac{\sqrt{N}|d|}{2 \pi}\right)^{s} \Gamma\left(s+\frac{1}{2}\right) L\left(s, E_{d}\right)=\epsilon_{E}(d) \Lambda\left(1-s, E_{d}\right) \quad$ with $\quad \epsilon_{E}(d)=\epsilon_{E} \chi_{d}(-N)$.
By Waldspurger's theorem, $L\left(\frac{1}{2}, E_{d}\right) \geq 0$. As $L\left(\frac{1}{2}, E_{d}\right)=0$ if $\epsilon_{E}(d)=-1$, we consider

$$
\mathcal{E}=\left\{d: d \text { is a fundamental discriminant with }(d, 2 N)=1 \text { and } \epsilon_{E}(d)=1\right\} .
$$

About central L-values

- Values of $L\left(s, E_{d}\right)$ and its derivatives at $s=\frac{1}{2}$ encode deep arithmetic information (predicted by the Birch and Swinnerton-Dyer conjecture).
- (After Kolyvagin, Murty-Murty, and Bump-Friedberg-Hoffstein), there are infinitely many of these values (and their derivatives) that are non-vanishing.
- Asymptotic for the second moment of $L\left(\frac{1}{2}, E_{d}\right)$ was established by Soundararajan-Young (under GRH) and Xiannan Li (unconditionally).

About central L-values

- Values of $L\left(s, E_{d}\right)$ and its derivatives at $s=\frac{1}{2}$ encode deep arithmetic information (predicted by the Birch and Swinnerton-Dyer conjecture).
- (After Kolyvagin, Murty-Murty, and Bump-Friedberg-Hoffstein), there are infinitely many of these values (and their derivatives) that are non-vanishing.
- Asymptotic for the second moment of $L\left(\frac{1}{2}, E_{d}\right)$ was established by Soundararajan-Young (under GRH) and Xiannan Li (unconditionally).
- Goldfeld's conjecture: for almost all $d \in \mathcal{E}, L\left(\frac{1}{2}, E_{d}\right) \neq 0$.
- Heath-Brown proved that under GRH for at least $\frac{1}{4}$ of $d \in \mathcal{E}, L\left(\frac{1}{2}, E_{d}\right) \neq 0$.
- Smith proved that under BSD (and a mild condition), Goldfeld's conjecture is true!

A conjecture of Keating-Snaith

As d ranges in $\mathcal{E}, \log L\left(\frac{1}{2}, E_{d}\right)$ shall behave like a normal random variable with mean $-\frac{1}{2} \log \log |d|$ and variance $\log \log |d|$.

A conjecture of Keating-Snaith

As d ranges in $\mathcal{E}, \log L\left(\frac{1}{2}, E_{d}\right)$ shall behave like a normal random variable with mean $-\frac{1}{2} \log \log |d|$ and variance $\log \log |d|$. More precisely, for any fixed interval (α, β),

$$
\begin{aligned}
& \#\left\{d \in \mathcal{E}, X<|d| \leq 2 X: \frac{\log L\left(\frac{1}{2}, E_{d}\right)+\frac{1}{2} \log \log |d|}{\sqrt{\log \log |d|}} \in(\alpha, \beta)\right\} \\
& =(\Psi(\alpha, \beta)+o(1)) \#\{d \in \mathcal{E}: X<|d| \leq 2 X\}
\end{aligned}
$$

as $X \rightarrow \infty$, where

$$
\Psi(\alpha, \beta)=\int_{\alpha}^{\beta} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

and the kernel of the integral is the probability density function of a standard normal random variable (i.e., with mean 0 and variance 1).

A conjecture of Keating-Snaith

As d ranges in $\mathcal{E}, \log L\left(\frac{1}{2}, E_{d}\right)$ shall behave like a normal random variable with mean $-\frac{1}{2} \log \log |d|$ and variance $\log \log |d|$. More precisely, for any fixed interval (α, β),

$$
\begin{aligned}
& \#\left\{d \in \mathcal{E}, X<|d| \leq 2 X: \frac{\log L\left(\frac{1}{2}, E_{d}\right)+\frac{1}{2} \log \log |d|}{\sqrt{\log \log |d|}} \in(\alpha, \beta)\right\} \\
& =(\Psi(\alpha, \beta)+o(1)) \#\{d \in \mathcal{E}: X<|d| \leq 2 X\}
\end{aligned}
$$

as $X \rightarrow \infty$, where

$$
\Psi(\alpha, \beta)=\int_{\alpha}^{\beta} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

and the kernel of the integral is the probability density function of a standard normal random variable (i.e., with mean 0 and variance 1).
This can be seen as a generalisation of Selberg's central limit theorem asserting that

$$
\frac{\log \left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|}{\sqrt{\frac{1}{2} \log \log T}}
$$

is approximately standard normal.

Upper and lower bounds towards the Keating-Snaith conjecture for $L\left(\frac{1}{2}, E_{d}\right)$
Theorem (Radziwiłł-Soundararajan, 2015 \& 2023)
Unconditionally, for any fixed $V \in \mathbb{R}$, as $X \rightarrow \infty$,

$$
\begin{aligned}
& \#\left\{d \in \mathcal{E}, 20<|d| \leq X: \frac{\log L\left(\frac{1}{2}, E_{d}\right)+\frac{1}{2} \log \log |d|}{\sqrt{\log \log |d|} \geq V\}}\right. \\
& \leq(\Psi(V, \infty)+o(1)) \#\{d \in \mathcal{E}:|d| \leq X\} .
\end{aligned}
$$

Upper and lower bounds towards the Keating-Snaith conjecture for $L\left(\frac{1}{2}, E_{d}\right)$
Theorem (Radziwiłł-Soundararajan, 2015 \& 2023)
Unconditionally, for any fixed $V \in \mathbb{R}$, as $X \rightarrow \infty$,

$$
\begin{aligned}
& \#\left\{d \in \mathcal{E}, 20<|d| \leq X: \frac{\log L\left(\frac{1}{2}, E_{d}\right)+\frac{1}{2} \log \log |d|}{\sqrt{\log \log |d|} \geq V\}}\right. \\
& \leq(\Psi(V, \infty)+o(1)) \#\{d \in \mathcal{E}:|d| \leq X\} .
\end{aligned}
$$

Assume $G R H$ for all $L(s, E \otimes \chi)$ with Dirichlet characters χ. Then for any fixed (α, β),

$$
\begin{aligned}
& \#\left\{d \in \mathcal{E}, X<|d| \leq 2 X: \frac{\log L\left(\frac{1}{2}, E_{d}\right)+\frac{1}{2} \log \log |d|}{\sqrt{\log \log |d|}} \in(\alpha, \beta)\right\} \\
& \geq \frac{1}{4}(\Psi(\alpha, \beta)+o(1)) \#\{d \in \mathcal{E}: X<|d| \leq 2 X\},
\end{aligned}
$$

as $X \rightarrow \infty$.

- The factor $\frac{1}{4}$ coincides with the proportion of non-vanishing $L\left(\frac{1}{2}, E_{d}\right)$ established by Heath-Brown under GRH.
- Recently, Bui, Evans, Lester, and Pratt proved a full asymptotic for an analogue of Keating-Snaith's conjecture (with the vanishing central values assigned a weight equal to zero).

A conjecture of Radziwiłł and Soundararajan

Based on Keating-Snaith's conjecture, Radziwiłł and Soundararajan formulated the following conjecture regarding the distribution of orders of Tate-Shafarevich groups $Ш\left(E_{d}\right)$ of E_{d}.

Conjecture (Radziwiłł-Soundararajan, 2015)

Let E be given in Weierstrass form $y^{2}=f(x)$ for a monic cubic integral polynomial f, and let K denote the splitting field of f over \mathbb{Q}. Define $c(g) \in \mathbb{N}$ so that $c(g)-1$ is the number of fixed points of $g \in \operatorname{Gal}(K / \mathbb{Q})$, and set

$$
\mu(E)=-\frac{1}{2}-\frac{1}{|G|} \sum_{g \in G} \log c(g) \quad \text { and } \quad \sigma(E)=1+\frac{1}{|G|} \sum_{g \in G}(\log c(g))^{2} .
$$

Then, as d ranges over \mathcal{E}, the distribution of $\log \left(\left|\amalg\left(E_{d}\right)\right| / \sqrt{|d|}\right)$ is approximately Gaussian, with mean $\mu(E) \log \log |d|$ and variance $\sigma(E)^{2} \log \log |d|$. Note that denoting n_{K} the degree of K, one has the following table of explicit values of $\mu(E)$ and $\sigma(E)^{2}$.

n_{K}	1	2	3	6
$\mu(E)$	$-\frac{1}{2}-2 \log 2$	$-\frac{1}{2}-\frac{3}{2} \log 2$	$-\frac{1}{2}-\frac{2}{3} \log 2$	$-\frac{1}{2}-\frac{5}{6} \log 2$
$\sigma(E)^{2}$	$1+4(\log 2)^{2}$	$1+\frac{5}{2}(\log 2)^{2}$	$1+\frac{4}{3}(\log 2)^{2}$	$1+\frac{7}{6}(\log 2)^{2}$

What is known?

When $L\left(\frac{1}{2}, E_{d}\right) \neq 0$, there is an analytic correspondence of $\left|\amalg\left(E_{d}\right)\right|$ defined by

$$
S\left(E_{d}\right)=L\left(\frac{1}{2}, E_{d}\right) \frac{\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|^{2}}{\Omega\left(E_{d}\right) \operatorname{Tam}\left(E_{d}\right)},
$$

where $\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|$ denotes the order of the rational torsion group of $E_{d}, \Omega\left(E_{d}\right)$ is the real period of a minimal model for E_{d}, and $\operatorname{Tam}\left(E_{d}\right)=\prod_{p} T_{p}(d)$ is the product of the Tamagawa numbers. (Note that under "rank zero" BSD, $\left|\amalg\left(E_{d}\right)\right|=S\left(E_{d}\right)$.)

What is known?

When $L\left(\frac{1}{2}, E_{d}\right) \neq 0$, there is an analytic correspondence of $\left|\amalg\left(E_{d}\right)\right|$ defined by

$$
S\left(E_{d}\right)=L\left(\frac{1}{2}, E_{d}\right) \frac{\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|^{2}}{\Omega\left(E_{d}\right) \operatorname{Tam}\left(E_{d}\right)},
$$

where $\left|E_{d}(\mathbb{Q})_{\text {tors }}\right|$ denotes the order of the rational torsion group of $E_{d}, \Omega\left(E_{d}\right)$ is the real period of a minimal model for E_{d}, and $\operatorname{Tam}\left(E_{d}\right)=\prod_{p} T_{p}(d)$ is the product of the Tamagawa numbers. (Note that under "rank zero" BSD, $\left|\amalg\left(E_{d}\right)\right|=S\left(E_{d}\right)$.)

Theorem (Radziwiłł-Soundararajan, 2015)

Unconditionally, for any fixed $V \in \mathbb{R}$, as $X \rightarrow \infty$,

$$
\#\left\{d \in \mathcal{E}, 20<|d| \leq X: \frac{\log \left(S\left(E_{d}\right) / \sqrt{|d|}\right)-\mu(E) \log \log |d|}{\sqrt{\sigma(E)^{2} \log \log |d|}}>V\right\}
$$

is bounded above by $(\Psi(V, \infty)+o(1)) \#\{d \in \mathcal{E}:|d| \leq X\}$. Moreover, if BSD holds for elliptic curves with analytic rank zero, then the quantity above is also an upper bound for

$$
\#\left\{d \in \mathcal{E}, 20<|d| \leq X: L\left(\frac{1}{2}, E_{d}\right) \neq 0, \frac{\log \left(\left|\amalg\left(E_{d}\right)\right| / \sqrt{|d|}\right)-\mu(E) \log \log |d|}{\sqrt{\sigma(E)^{2} \log \log |d|}}>V\right\}
$$

A joint distribution conjecture

Conjecture (W., 2024+)

As d ranges over \mathcal{E}, the joint distribution of $\log L\left(\frac{1}{2}, E_{d}\right)$ and $\log \left(\left|\amalg\left(E_{d}\right)\right| / \sqrt{|d|}\right)$ is approximately bivariate normal. More precisely,

$$
\begin{aligned}
\#\{d \in \mathcal{E}, 20<|d| \leq X: & \frac{\log L\left(\frac{1}{2}, E_{d}\right)+\frac{1}{2} \log \log |d|}{\sqrt{\log \log |d|}} \in\left(\alpha_{1}, \beta_{1}\right) \\
& \left.\frac{\log \left(\amalg\left(E_{d}\right) / \sqrt{|d|}\right)-\mu(E) \log \log |d|}{\sqrt{\sigma(E)^{2} \log \log |d|}} \in\left(\alpha_{2}, \beta_{2}\right)\right\}
\end{aligned}
$$

is asymptotic to $\left(\Xi_{E}(\underline{\alpha}, \underline{\beta})+o(1)\right) \#\{d \in \mathcal{E}: 20<|d| \leq X\}$, as $X \rightarrow \infty$, where

$$
\Xi_{E}(\underline{\alpha}, \underline{\beta})=\int_{\left(\alpha_{\mathbf{1}}, \beta_{\mathbf{1}}\right) \times\left(\alpha_{\mathbf{2}}, \beta_{\mathbf{2}}\right)} \frac{1}{2 \pi \sqrt{\operatorname{det}\left(\mathfrak{K}_{E}\right)}} e^{-\frac{1}{2} \mathrm{v}^{\mathrm{T}} \mathfrak{K}_{E}^{-1} v} d \mathrm{v}, \quad \mathfrak{K}_{E}=\left(\begin{array}{cc}
1 & \sigma(E)^{-1} \\
\sigma(E)^{-1} & 1
\end{array}\right) .
$$

- By slightly modifying an argument of Radziwiłł-Soundararajan (2015), we showed that the conjecture is valid "from above" (i.e. \lesssim holds unconditionally for sufficiently large β_{1}, β_{2}).

Towards the joint distribution

Theorem (W., 2024+)

Assume GRH for the family of twisted L-functions $L(s, E \otimes \chi)$ with all Dirichlet characters χ. For any fixed $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ and $\underline{\beta}=\left(\beta_{1}, \beta_{2}\right)$, as $X \rightarrow \infty$,

$$
\begin{aligned}
\#\{d \in \mathcal{E}, X<|d| \leq 2 X: & \frac{\log L\left(\frac{1}{2}, E_{d}\right)+\frac{1}{2} \log \log |d|}{\sqrt{\log \log |d|}} \in\left(\alpha_{1}, \beta_{1}\right) \\
& \left.\frac{\log \left(S\left(E_{d}\right) / \sqrt{|d|}\right)-\mu(E) \log \log |d|}{\sqrt{\sigma(E)^{2} \log \log |d|}} \in\left(\alpha_{2}, \beta_{2}\right)\right\}
\end{aligned}
$$

is greater or equal to

$$
\frac{1}{4}\left(\Xi_{E}(\underline{\alpha}, \underline{\beta})+o(1)\right) \#\{d \in \mathcal{E}: X<|d| \leq 2 X\}
$$

Furthermore, suppose that BSD holds for elliptic curves with analytic rank zero. Then the above assertion is true with $S\left(E_{d}\right)$ being replaced by $\left|\amalg\left(E_{d}\right)\right|$.

Consequences

- The theorem implies the early-mentioned theorem of Radziwiłł-Soundararajan.
- Also, as $X \rightarrow \infty$, we have

$$
\begin{aligned}
& \#\left\{d \in \mathcal{E}, X<|d| \leq 2 X: \frac{\log \left(S\left(E_{d}\right) / \sqrt{|d|}\right)-\mu(E) \log \log |d|}{\sqrt{\sigma(E)^{2} \log \log |d|}} \in\left(\alpha_{2}, \beta_{2}\right)\right\} \\
& \geq \frac{1}{4}\left(\Psi\left(\alpha_{2}, \beta_{2}\right)+o(1)\right) \#\{d \in \mathcal{E}: X<|d| \leq 2 X\} .
\end{aligned}
$$

- Again, under BSD for elliptic curves with analytic rank zero, the above assertion is true with $S\left(E_{d}\right)$ being replaced by $\left|Ш\left(E_{d}\right)\right|$.

Table of Contents

(1) L-functions of quadratic twists of elliptic curves, related results, and conjectures
(2) Some key ingredients of the proof

Following Soundararajan (à la Selberg)

Let $x=X^{1 / \log \log \log x}$, and define

$$
\mathcal{P}(d ; x)=\sum_{\substack{p \leq x \\ p \nmid N_{0}}} \frac{\lambda_{E}(p)}{\sqrt{p}} \chi_{d}(p) .
$$

Assume GRH for $L\left(s, E_{d}\right)$, and let $\frac{1}{2}+i \gamma_{d}$ run over the non-trivial zeros of $L\left(s, E_{d}\right)$. If $L\left(\frac{1}{2}, E_{d}\right)$ is non-vanishing, then for every $d \in \mathcal{E}$ with $X \leq|d| \leq 2 X$, one has
$\log L\left(\frac{1}{2}, E_{d}\right)=\mathcal{P}(d ; x)-\frac{1}{2} \log \log X+O\left(\log \log \log X+\sum_{\gamma_{d}} \log \left(1+\frac{1}{\left(\gamma_{d} \log x\right)^{2}}\right)\right)$,

Following Soundararajan (à la Selberg)

Let $x=X^{1 / \log \log \log x}$, and define

$$
\mathcal{P}(d ; x)=\sum_{\substack{p \leq x \\ p \nmid N_{0}}} \frac{\lambda_{E}(p)}{\sqrt{p}} \chi_{d}(p) .
$$

Assume GRH for $L\left(s, E_{d}\right)$, and let $\frac{1}{2}+i \gamma_{d}$ run over the non-trivial zeros of $L\left(s, E_{d}\right)$. If $L\left(\frac{1}{2}, E_{d}\right)$ is non-vanishing, then for every $d \in \mathcal{E}$ with $X \leq|d| \leq 2 X$, one has

$$
\log L\left(\frac{1}{2}, E_{d}\right)=\mathcal{P}(d ; x)-\frac{1}{2} \log \log X+O\left(\log \log \log X+\sum_{\gamma_{d}} \log \left(1+\frac{1}{\left(\gamma_{d} \log x\right)^{2}}\right)\right)
$$

and

$$
\begin{aligned}
& \log \left(S\left(E_{d}\right) / \sqrt{|d|}\right)-\mu(E) \log \log |d| \\
& =\mathcal{P}(d ; x)-\mathcal{C}(d ; x)+O\left((\log \log \log X)^{2}+\sum_{\gamma_{d}} \log \left(1+\frac{1}{\left(\gamma_{d} \log x\right)^{2}}\right)\right)
\end{aligned}
$$

for all but at most $\ll X / \log \log \log X d \in \mathcal{E}$ with $X \leq|d| \leq 2 X$, where

$$
\mathcal{C}(d ; x)=\sum_{\log x \leq p \leq x}\left(\log T_{p}(d)-\frac{1}{p+1} \log c(p)\right)
$$

$c(p)=1+$ the no. of sol. of $f(z) \equiv 0(\bmod p)$, and E is given by the model $y^{2} \equiv f(z)$.

Weighted moments

Let h be a smooth even function such that $h(t) \ll\left(1+t^{2}\right)^{-1}$, and its Fourier transform is compactly supported in $[-1,1]$. Fix $b, c \in \mathbb{R}$. Then for any $L \geq 1$ such that $e^{L} \leq X^{2-10 \varepsilon}$, we have

$$
\begin{align*}
& \sum_{d \in \mathcal{E}(\kappa, a)}(b \mathcal{P}(d ; x)+c(\mathcal{P}(d ; x)-\mathcal{C}(d ; x)))^{k} \sum_{\gamma_{d}} h\left(\frac{\gamma_{d} L}{2 \pi}\right) \Phi\left(\frac{\kappa d}{X}\right) \\
& =\frac{X}{N_{0}} \prod_{p \nmid N_{0}}\left(1-\frac{1}{p^{2}}\right) \widehat{\Phi}(0)\left(\frac{2 \log X}{L} \widehat{h}(0)+\frac{h(0)}{2}+O\left(L^{-1}\right)\right) \tag{1}\\
& \times\left(\left(b^{2}+2 b c+c^{2} \sigma(E)^{2}\right) \log \log X\right)^{\frac{k}{2}}\left(M_{k}+o(1)\right)+O\left(X^{\frac{1}{2}+\varepsilon} e^{\frac{L}{4}}\right),
\end{align*}
$$

where the implied constants depend on b, c, and

$$
M_{k}= \begin{cases}0 & \text { if } n \text { is odd } \\ \frac{k!}{2^{k / 2}(k / 2)!} & \text { if } k \text { is even } .\end{cases}
$$

is the k-th moment of the standard normal random variable.

An application of the Cramér-Wold device

Proposition

Let $\alpha_{i}<\beta_{i}$ be real numbers, and set $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ and $\underline{\beta}=\left(\beta_{1}, \beta_{2}\right)$. Let $\mathcal{H}_{X}(\underline{\alpha}, \underline{\beta})$ be the set of discriminants $d \in \mathcal{E}$, with $X \leq|d| \leq 2 X$, such that

$$
\mathcal{Q}_{1}(d ; X)=\frac{\mathcal{P}(d ; x)}{\sqrt{\log \log X}} \in\left(\alpha_{1}, \beta_{1}\right) \quad \text { and } \quad \mathcal{Q}_{2}(d ; X)=\frac{\mathcal{P}(d ; x)-\mathcal{C}(d ; x)}{\sqrt{\sigma(E)^{2} \log \log X}} \in\left(\alpha_{2}, \beta_{2}\right) \text {, }
$$

while $L\left(s, E_{d}\right)$ has no zeros $\frac{1}{2}+\gamma_{d}$ with $\left|\gamma_{d}\right| \leq((\log X)(\log \log X))^{-1}$. Then for any $\delta>0$, we have

$$
\mathcal{H}_{X}(\underline{\alpha}, \underline{\beta}) \geq\left(\frac{1}{4}-\delta\right)\left(\Xi_{E}(\underline{\alpha}, \underline{\beta})+o(1)\right) \#\{d \in \mathcal{E}: X \leq|d| \leq 2 X\} .
$$

- We also invoked the existence theorem of bivariate normal random variables.

An application of the Cramér-Wold device

Proposition

Let $\alpha_{i}<\beta_{i}$ be real numbers, and set $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ and $\underline{\beta}=\left(\beta_{1}, \beta_{2}\right)$. Let $\mathcal{H}_{X}(\underline{\alpha}, \underline{\beta})$ be the set of discriminants $d \in \mathcal{E}$, with $X \leq|d| \leq 2 X$, such that

$$
\mathcal{Q}_{1}(d ; X)=\frac{\mathcal{P}(d ; x)}{\sqrt{\log \log X}} \in\left(\alpha_{1}, \beta_{1}\right) \quad \text { and } \quad \mathcal{Q}_{2}(d ; X)=\frac{\mathcal{P}(d ; x)-\mathcal{C}(d ; x)}{\sqrt{\sigma(E)^{2} \log \log X}} \in\left(\alpha_{2}, \beta_{2}\right),
$$

while $L\left(s, E_{d}\right)$ has no zeros $\frac{1}{2}+\gamma_{d}$ with $\left|\gamma_{d}\right| \leq((\log X)(\log \log X))^{-1}$. Then for any $\delta>0$, we have

$$
\mathcal{H}_{X}(\underline{\alpha}, \underline{\beta}) \geq\left(\frac{1}{4}-\delta\right)\left(\Xi_{E}(\underline{\alpha}, \underline{\beta})+o(1)\right) \#\{d \in \mathcal{E}: X \leq|d| \leq 2 X\} .
$$

- We also invoked the existence theorem of bivariate normal random variables.
- Note that Radziwiłł and Soundararajan showed that the number of discriminants $d \in \mathcal{E}$, with $X \leq|d| \leq 2 X$, such that

$$
\sum_{\left|\gamma_{d}\right| \geq((\log X)(\log \log X))^{-1}} \log \left(1+\frac{1}{\left(\gamma_{d} \log x\right)^{2}}\right) \geq(\log \log \log X)^{3}
$$

is $\ll X / \log \log \log X$.

Thank you:)

