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Weyl differencing

Let us begin with the differencing process. Write e(x) = e2πix for real x .

Let f (x) =
∑k

j=0 αjx
j ∈ R[x ]. Weyl observed that∣∣∣∣∣

N∑
n=1

e(f (n))

∣∣∣∣∣
2

=
N∑

n=1

N∑
m=1

e(f (m)− f (n))

= N + 2Re
N−1∑
ℓ=1

N−ℓ∑
n=1

e(f (n + ℓ)− f (n)).

Note that f (n + ℓ)− f (n) = gℓ(n) is a polynomial of degree k − 1.

This process is known as Weyl differencing.

One can continue the process k − 1 times and reduce the exponent to a
linear polynomial.
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In R, a sequence (an)
∞
n=1 of real numbers is equidistributed (mod 1) if for

any interval I ⊂ [0, 1), we have

lim
N→∞

#{an : 1 ≤ n ≤ N and {an} ∈ I}
N

= |I |,

where {a} is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution
theorem.

Theorem (Weyl, 1916)

If f (x) is a polynomial with real coefficients and at least one of the
non-constant coefficients is irrational, then the sequence {f (n)} is
equidistributed (mod 1).

In the same paper, using the idea of differencing, Weyl also proved the
famous inequality(Weyl’s ineq), although it was given in a less explicit
form.
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Theorem (Weyl’s inequality, an explicit form)

Suppose that f (x) =
∑k

j=0 αjx
j ∈ R[x ], and that |αk − a/q| < q−2,

(a, q) = 1. Then for any ε > 0,

N∑
n=1

e(f (n)) ≪k,ε N
1+ε

(
1

q
+

1

N
+

q

Nk

)21−k

.

Theorem (Weyl’s inequality, an inverse form)

Given 0 < η ≤ 21−k , for any ε > 0, if N is sufficiently large in terms of ϵ
and η, and ∣∣∣∣∣

N∑
n=1

e(f (n))

∣∣∣∣∣ > N1−η,

then there are (a, q) = 1, such that

q < Zη,ε,k = Nε+2k−1η and |qαk − a| < Zη,ε,k/N
k .
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Weyl’s inequality over primes in Z

Theorem (Harman)

Suppose that f (x) =
∑k

j=0 αjx
j ∈ R[x ], and that |αk − a/q| < q−2,

(a, q) = 1. Then for any ε > 0,

∑
p≤N

(log p)e(f (p)) ≪k,ε N
1+ε

(
1

q
+

1

N1/2
+

q

Nk

)41−k

.
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As a key ingredient in the Hardy-Littlewood Method, the Weyl-type
inequality is applied in many problems.

• Waring’s problem, Goldbach’s problem...

• Diophantine inequalities, Diophantine equations...

• Sumsets problems, Sequences...

• Riemann zeta-function, L-functions...
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Ring of polynomials over Fq

Let Fq[t] be the polynomial ring over a finite field with q elements and
characteristic p.

Let

K = Fq(t) =

{
x

y
: x , y ∈ Fq[t], y ̸= 0

}
be the field of fractions, and let

K∞ = Fq((1/t)) =


N∑

j=−∞
aj t

j : aj ∈ Fq,N ∈ Z

 .

For α =
∑N

j=−∞ aj t
j ∈ K∞ with aN ̸= 0, we define ord(α) = N and

|α| = qordα. In particular, ord(0) = −∞.

Here, Fq[t], K, K∞ play the roles of Z,Q,R.
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Exponential function on K∞

Define {α} =
∑−1

j=−∞ aj t
j to be the fractional part of α and let

res(α) = a−1. Then,

T =


−1∑

j=−∞
aj t

j : aj ∈ Fq


is the analog of [0, 1) in R.

Let tr : Fq → Fp denote the trace map. Then for α ∈ K∞, the
exponential function is defined as

e(α) := e2πi ·tr(resα)/p.

This is an additive character on K∞ and analogous to e2πix in R. We can
use this function to study additive problems in function fields.
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Weyl differencing is problematic in Fq[t].

Q: Can we use the differencing process to prove an analog of Weyl’s
inequality?

Let f (x) =
∑k

j=1 αjx
j , αj ∈ K∞.

• If k < p = char(Fq), then one can repeat Weyl differencing and prove
analogous results.

• If k ≥ p, Weyl differencing is problematic. Look at the leading
coefficient of f (x). If we do f (x + h)− f (x), k − 1 times, we end up
having a factor of k! in the final leading coefficient, which is 0 when
k ≥ p.

Y.-R. Liu and T. Wooley (2010), in their Waring’s problem paper,
overcame the barrier of k < p in function fields, by using large sieve and
Vinogradov’s mean value theorem (VMVT).
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Carlitz’s Example

For any x =
∑n

j=0 cj t
j ∈ Fq[t], we have xp =

∑n
j=0 c

p
j t

jp ∈ Fq[t
p].

Example.(Carlitz, 1952) Let

C =
{
α : α =

n∑
i=−∞

ci t
i , c−jp−1 = 0 for all j

}
,

so that e(αxp) = 1 for all x ∈ Fq[t].

Weyl-type inequality: if |
∑

e(αxp)| is large, can the leading coefficient α
be well-approximated by rationals with small denominators?
There are many (irrational) α ∈ C that cannot be well-approximated by
rationals.

Example. For polynomials like f (x) = αxp + βx , it is not possible to
determine the Diophantine approximation of α or β by the Weyl sum,
since xp and x interfere with one another.
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Q: Given f (x) =
∑

j∈K αj x
j ∈ K∞[x ] supported on K ⊂ Z+, which

coefficients satisfy Weyl-type inequalities?

Example

Suppose p = 7 and K = ([1, 3p + 1] ∩ Z) ∪ {p3 + p2, 3p4, p6 + 2p5}.

To visualize it, we plot K on the number line in the following way.
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Example

Suppose p = 7 and K = ([1, 3p + 1] ∩ Z) ∪ {p3 + p2, 3p4, p6 + 2p5}.

To visualize it, we plot K on the number line in the following way.

Ideally, the set of indices (in green) without interference is the largest
subset of K on which Weyl’s inequality applies.
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Given a finite set K ⊂ Z+, define the set (without interference)

IK = {k ∈ K : p ∤ k , kpv /∈ K for any positive integer v}.

——————–

1 Define the shadow of K to be
S(K) := {j ∈ Z+ : p ∤

(r
j

)
for some r ∈ K}.

2 Define K∗ := {k ∈ K : p ∤ k and pvk /∈ S(K) for any v ∈ Z+} to
“remove” interfering coefficients (indices) on the shadow.

3 For K0 = K, Kn = Kn−1 \ K∗
n−1, we define K̃ :=

⋃
n≥0K∗

n.

Lê-Liu-Wooley proved a Weyl-type inequality for all coefficients αj with

j ∈ K̃.

Note that
K̃ ⊂ IK ⊂ (K \ pZ).
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Theorem (Lê-Liu-Wooley, 2023)

Fix q and a finite set K ⊂ Z+. There exist positive constant c and C
depending only on K and q, such that following holds. Let ϵ > 0 and N
sufficiently large (in terms of K, ϵ, q). Let f (x) =

∑
r∈K αrx

r ∈ K∞[x ]. If∣∣∣∣∣∣
∑

deg x<N

e(f (x))

∣∣∣∣∣∣ ≥ qN−η,

for some η ∈ (0, cN]. Then for each k ∈ K̃ there exist a ∈ Fq[t] and
monic g ∈ Fq[t] such that

|gαk − a| < qϵN+Cη

qkN
and |g | ≤ qϵN+Cη.

• f (x) = αkx
k + · · · with (k , p) = 1.

• f (x) = αℓx
ℓ + · · ·+ αkx

k + · · · , with (k , p) = 1 and k > ℓ/p.

• f (x) =
∑

1≤j≤k,(j ,p)=1 αjx
j . In this case, K̃ = I = K.
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Define the von Mangoldt function over Fq[t] by Λ(x) = deg(P), if
x = cP r for some monic irreducible P, zero otherwise.

Theorem (Champagne-G.-Lê-Liu, 2023+)

Let K ⊂ Z+ be a finite set and k ∈ IK. There exist constants ck ,Ck > 0
(depending on k,K, q) such that the following holds:
Let ϵ > 0 and N be sufficiently large in terms of K, ϵ and q. Suppose that
f (u) =

∑
r∈K∪{0} αru

r ∈ K∞[u] satisfying the bound∣∣∣∣∣∣
∑
x∈AN

Λ(x)e(f (x))

∣∣∣∣∣∣ ≥ qN−η,

for some η with 0 < η ≤ ckN. Then, there exist ak ∈ Fq[t] and monic
gk ∈ Fq[t] such that

|gkαk − ak | <
qϵN+Ckη

qkN
and |gk | ≤ qϵN+Ckη.
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Application 1: Equidistribution Theorem

Like Weyl proved the equidistribution theorem, Lê-Liu-Wooley (in the
same paper) proved the next theorem.

Theorem (Lê-Liu-Wooley, 2023)

Let f (u) =
∑

r∈K∪{0} αru
r be a polynomial supported on K ⊂ Z+ with

coefficients in K∞. Suppose αk is irrational for some k ∈ K̃. Then the
sequence (f (x))x∈Fq [t] is equidistributed in T.

Remarks:

• Carlitz (1952) gave a family of irrational α that e(αxp) = 1 for all
x ∈ Fq[t], thus equidistribution does not hold for f (x) = αxp.

• Bergelson-Leibman (2015) proved a similar equidistribution theorem
independently using ergodic-theoretic methods.
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P = {x ∈ Fq[t] : monic irreducible}.

Theorem (Champagne-G.-Lê-Liu, 2023+)

Let f (u) =
∑

r∈K∪{0} αru
r be a polynomial supported on K ⊂ Z+ with

coefficients in K∞. Suppose αk is irrational for some k ∈ IK. Then the
sequence (f (x))x∈Fq [t] is equidistributed in T.

• Carlitz (1952): the result may not hold for f (x) = αxp.

• Rhin (1972) proved the theorem when K = {1}.

• Difficulty: The space P is not self-similar as Fq[t]. A Weyl-type
inequality does not immediately imply the equidistribution theorem.

1 We prove for the special case K̃ = IK = K, for which we further prove
an epsilon-free version of Weyl’s inequality.

2 Then we prove the equidistribution theorem on IK for general K, using
Jérémy Champagne’s argument.
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Application 2: Additive inequality of irreducible powers

Let Pk
kN = {xk : x is monic irreducible, deg(xk) = kN}.

Theorem (G.)

Suppose (p, k) = 1 and k ≥ 2. Let N be a large number. Let A be a set

of polynomials in Fq[t] of degree less than kN and 0 < |A|
qkN

= δ < e−2.
Then we have |A+ Pk

kN |
qkN

> δ
4 log(2)+cq log(k)

log log(1/δ)

for some cq > 0.

• It is different from the analog in Z that the theorem is not true when
p | k .

• Among all monic degree-kN polynomials, the proportion (density) of
Pk
kN is very tiny. However, A+ Pk

kN is significantly denser than A for
every small density set A.
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Ingredients of the Proof

Ingredients of Lê-Liu-Wooley’s original method include

• Weyl’s shift,

• Large sieve inequality (Hsu),

• Vinogradov’s mean value theorem (Liu-Wooley).

More tools for irreducible elements:

• Vaughan’s identity in Fq[t].

• A bootstrap argument. (Iterate LLW’s argument multiple times.)

• Major arc estimates for removing the epsilon.

• A nice self-duality property of K∞.
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To help sketch the arguments, we introduce the following notation:

GN := {x ∈ Fq[t] : deg(x) < N}.

This is the analog of [0,N) in integers.

Moreover,
AN := {x ∈ Fq[t] : monic deg(x) = N}.

This is the analog of the dyadic interval [N, 2N) in integers.
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Sketch of Lê-Liu-Wooley’s argument

Lemma (Weyl’s shift)

Let A ⊂ Fq[t] be a multiset consisting of elements of degree less than N.
We have ∑

x∈AN

e(f (x)) = #(A)−1
∑
x∈AN

∑
y∈A

e(f (y + x))

Proof. For each y with deg(y) < N, we have∑
x∈AN

e(f (x)) =
∑
x∈AN

e(f (x + y)).

Summing y ∈ A, the lemma follows.

• The choice of A is very flexible!

• Instead of looking at a sum over AN , we turn attention on summing
e(gx(y)) = e(f (x + y)) over y ∈ A.

• The new polynomial gx(y) is supported on the shadow. (Bad)
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Sketch of Lê-Liu-Wooley’s argument

1 Based on Dirichlet’s approximation, we take a multiset A = {ℓu} that
“fit” the approximation and (Weyl) shift the sum onto A.

• This turns the original sum into a bilinear sum.

• It creates well-spaced (leading) coefficients {αℓk}, i.e. distinct
elements are at least q−λ apart in T for some λ > 0 (depending on the
Diophantine approximation of α).

2 Then, we apply Hölder’s inequality and Hsu’s large sieve inequality to
convert the bilinear sum into Vinogradov’s mean value problem.

3 Finally, we apply Liu-Wooley’s VMVT. The final upper estimate
depends on qλ (and hence the Diophantine approximation of α).
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Vaughan’s identity

Define the mobius function µ(x) = (−1)r if x is square-free with r distinct
monic irreducible factors, zero otherwise.

Let 1 ≤ U,V ≤ N. For every monic x ∈ Fq[t] with deg(x) < U, we have

Λ(x) = a1(x) + a2(x) + a3(x),

where
a1(x) = −

∑
uvw=x
u∈GU
v∈GV

Λ(u)µ(v), a2(x) =
∑
uv=x
u∈GV

deg(u)µ(v),

a3(x) =
∑

uvw=x
deg(u)≥U
deg(v)≥V

Λ(u)µ(v),

and the sums are over monic polynomials.
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By Vaughan’s identity,

S(N, f ) =
∑
x∈AN

Λ(x)e(f (x)) = S1 + S2 + S3.

• Type I sums: J1 =
∑
u∈AL

ϕ(u)
∑

v∈AN−L

e(f (uv)).

S1 and S2 can be decomposed as linear combination of Type I sums.
In particular, when L = 0, this is an ordinary exponential sum.

• Type II sums:

J2 =
∑
u∈PL

∑
v∈GN−L

ψ(v)e(f (uv)),

where PL is the set of monic irreducible polynomials of degree L.
Using triangle inequality, S3 can be bounded by Type II sums.
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Le-Liu-Wooley estimated the ordinary exponential sum:

• When (k , p) = 1 and |
∑

x∈GN
e(f (x))| > qN−M for some M, find a

rational approximation: • |b| < qM and • |bα− a| < q−kN+M .

In our proof, we consider the problem for the bilinear sums.

• Type I sums

J1 =
∑
u∈AL

ϕ(u)
∑

v∈AN−L

e(f (uv)), for 0 ≤ L ≤ N − 2M

• Type II sums

J2 =
∑
u∈PL

∑
v∈GN−L

ψ(v)e(f (uv)), for 0 ≤ L ≤ N/2.

The difficulty is the to obtain the same quality of the rational
approximation of αk simultaneously for all (large) L in the red range.
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Estimate of Type II Sums

Consider
J2 =

∑
u∈PL

∑
v∈GN−L

ψ(v)e(f (uv)).

• One can partition PL = ∪iAi (Very flexible)

• After triangle inequality, to study J2, it suffices to look at the sum
over A: ∑

u∈A⊂PL

∑
v∈GN−L

ψ(v)e(f (uv)).

These two bullet points are parallel to Weyl’s shift.
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• We begin with Dirichlet’s theorem. Accordingly, we pick a family of
sets A that “fit” the trivial approximation:

|J2| ≤
∑
i

∣∣∣∣∣∣
∑
u∈Ai

∑
v∈GN−L

ψ(v)e(f (uv))

∣∣∣∣∣∣ .
• After Holder’s inequality, Hsu’s large sieve, and Liu-Wooley’s
theorem, we end up having

If |J2| > TqN−M where |ψ| ≤ T , then there are (a, b) = 1 with

|bα− a| < q−kN+L, |b| < qM . (1)

The approximation (1) is worse than what we want when L > M, but this
is still much better than the trivial approximation.

Remark. The process in the second bullet point is independent of what A
is.
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Bootstrap the quality of the approximation

|J2| ≤
∑
i

∣∣∣∣∣∣
∑
u∈Ai

∑
v∈GN−L

ψ(v)e(f (uv))

∣∣∣∣∣∣
Next, we repeat LLW’s argument again.

• Suppose |J2| > TqN−M . Then we have approximation (1) in hand,
which is much better than the trivial approximation.

• Next, we find a new family of As that “fit” the approximation (1).
We are going to do LLW’s process over this new family of A.

• After Holder’s inequality, Hsu’s large sieve, and Liu-Wooley’s
theorem, we end up having:

If |J2| > TqN−M then there are (a, b) = 1 with

|bα− a| < q−kN+M , |b| < qM . (2)
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Further remarks

• For J2 =
∑

u∈PL

∑
v∈GN−L

ψ(v)e(f (uv)), we can do M ≤ L ≤ N/2 at
this moment.

The barrier N/2 can be relaxed to N if one applies Vaughan’s identity
to the bilinear sum and repeats the whole process again.

• In the classical Vaughan/Vinogradov’s Type I/II method, type II is
usually the more difficult one, but in our case, Type II is the easier
one.
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Generalizing K̃ to I

Lemma (Self-duality)

For any v ∈ Z+ ∪ {0} and α ∈ K∞, there exists τ = τv (α) ∈ K∞ such
that

e(αx rp
v
) = e(α(x r )p

v
) = e(τx r )

Given a finite K ⊂ Z+, R = RK = {r : p ∤ r , rpv ∈ K for some integer v}.

Using the above lemma, we can simplify the sum as∑
x

e
(∑

j∈K
αjx

j
)
=

∑
x

e
(∑

j∈R
τjx

j
)
.

Note that I ⊆ K ∩R and αj = τj when j ∈ I.

We know how to estimate the sum over R by LLW, since R̃ = R.
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Thank You !
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