A Weyl-type inequality for irreducible elements
in function fields, with applications

Zhenchao Ge

University of Waterloo

Lethbridge Number Theory & Combinatorics Seminar
October 17,2023

UNIVERSITY OF
%) WATERLOO

Weyl-type inequality in Fg[t]



This is joint work with:
Jérémy Champagne (University of Waterloo)
Thai Hoang L& (University of Mississippi)
Yu-Ru Liu (University of Waterloo)

Weyl-type inequality in Fg[t]



Weyl differencing

Let us begin with the differencing process. Write e(x) = e?™ for real x.
Let f(x) = Z_jl'(:() ajx/ € R[x]. Weyl observed that
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Note that f(n+ ¢) — f(n) = gy(n) is a polynomial of degree k — 1.
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This process is known as Weyl differencing.

One can continue the process k — 1 times and reduce the exponent to a
linear polynomial.
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In R, a sequence (a,)7°; of real numbers is equidistributed (mod 1) if for
any interval / C [0,1), we have

iy #lan:1<n< Nand {a} €/}

= |l
N—oo N | |’

where {a} is the fractional part of a.
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In R, a sequence (a,)7°; of real numbers is equidistributed (mod 1) if for
any interval / C [0,1), we have

. #{ap:1<n<Nand{a,} el}
lim
N—o0 N

:|I|7

where {a} is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution
theorem.
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In R, a sequence (a,)7°; of real numbers is equidistributed (mod 1) if for
any interval / C [0,1), we have

iy #lan:1<n< Nand {a} €/}

=l
N—o0 N | |’
where {a} is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution
theorem.

Theorem (Weyl, 1916)

If f(x) is a polynomial with real coefficients and at least one of the
non-constant coefficients is irrational, then the sequence {f(n)} is
equidistributed (mod 1).
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In R, a sequence (a,)7°; of real numbers is equidistributed (mod 1) if for
any interval / C [0,1), we have

iy #lan:1<n< Nand {a} €/}

=l
N—o0 N | |’
where {a} is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution
theorem.

Theorem (Weyl, 1916)

If f(x) is a polynomial with real coefficients and at least one of the
non-constant coefficients is irrational, then the sequence {f(n)} is
equidistributed (mod 1).

In the same paper, using the idea of differencing, Weyl also proved the
famous inequality(Weyl's ineq), although it was given in a less explicit
form.
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Theorem (Weyl's inequality, an explicit form)

Suppose that f(x) = Zf:o ajx) € R[x], and that |ax — a/q| < q72,

(a,q) = 1. Then for any ¢ > 0,

21—k

.

Theorem (Weyl's inequality, an inverse form)

Given 0 < n < 217K for any e > 0, if N is sufficiently large in terms of €

and n, and
N

> elf(n)

n=1

> NI,

then there are (a,q) = 1, such that

k—1
q<Zyex=NT2"" and |qak —a| < Z,.x/N*.

.
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Weyl's inequality over primes in Z

Theorem (Harman)

Suppose that f(x) = Zjl-(:o ajx) € R[x], and that |y — a/q| < q~2,
(a,q) = 1. Then for any € > 0,

41—k
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As a key ingredient in the Hardy-Littlewood Method, the Weyl-type
inequality is applied in many problems.

Waring's problem, Goldbach’s problem...
Diophantine inequalities, Diophantine equations...
Sumsets problems, Sequences...

Riemann zeta-function, L-functions...
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Ring of polynomials over [,

Let [F,[t] be the polynomial ring over a finite field with g elements and
characteristic p.

Let
X
K =TFq4(t) = {y x,y € Fglt],y # 0}
be the field of fractions, and let

N
Koo =Fq((1/t) =4 D ajt/ 1aj€Fg, NEZ

j==oc

Fora=Y1'  ajt/ € Koo with ay # 0, we define ord(a) = N and
la| = g°* 4 |n particular, ord(0) = —oo.
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Ring of polynomials over [,

Let [F,[t] be the polynomial ring over a finite field with g elements and
characteristic p.

Let
X
K =TFq4(t) = {y x,y € Fglt],y # 0}
be the field of fractions, and let

N
Koo =Fq((1/t) =4 D ajt/ 1aj€Fg, NEZ

j==oc

Fora =N __ ajt/ € Ky with ay # 0, we define ord(e) = N and

| a| — qordozj

. In particular, ord(0) = —oo.

Here, Fq[t], K, Ko play the roles of Z,Q, R.
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Exponential function on K

Define {a} = Zj_:l_oo ajt/ to be the fractional part of « and let
res(a) = a_1. Then,

-1
T= Z ajt/ 1aj e Fy

j=—00

is the analog of [0,1) in R.
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Exponential function on K

Define {a} = Zj_:l_oo ajt/ to be the fractional part of « and let
res(a) = a_1. Then,

-1
T= Z ajt/ 1aj e Fy

j=—00

is the analog of [0,1) in R.

Let tr : F; — F,, denote the trace map. Then for o € K, the
exponential function is defined as

e(a) — e27ri~tr(resa)/p'

This is an additive character on K., and analogous to €>™ in R. We can
use this function to study additive problems in function fields.

Weyl-type inequality in Fg[t]



Weyl differencing is problematic in F,[t].

Q: Can we use the differencing process to prove an analog of Weyl's
inequality?
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Weyl differencing is problematic in F,[t].

Q: Can we use the differencing process to prove an analog of Weyl's
inequality?

Let f(x) = Zf:l ajxj, aj € Kyo.

If k < p = char(Fy), then one can repeat Weyl differencing and prove
analogous results.

If kK > p, Weyl differencing is problematic. Look at the leading
coefficient of f(x). If we do f(x + h) — f(x), k — 1 times, we end up
having a factor of k! in the final leading coefficient, which is 0 when
k> p.
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Weyl differencing is problematic in F,[t].

Q: Can we use the differencing process to prove an analog of Weyl's
inequality?

Let f(x) = Zf:l ajxj, aj € Kyo.

If k < p = char(Fy), then one can repeat Weyl differencing and prove
analogous results.

If kK > p, Weyl differencing is problematic. Look at the leading
coefficient of f(x). If we do f(x + h) — f(x), k — 1 times, we end up
having a factor of k! in the final leading coefficient, which is 0 when
k> p.

Y.-R. Liu and T. Wooley (2010), in their Waring's problem paper,
overcame the barrier of k < p in function fields, by using large sieve and
Vinogradov's mean value theorem (VMVT).
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Carlitz's Example

Forany x = 7, cith € Fy[t], we have xP = > im0 cftf” € Fq[tP].
Example.(Carlitz, 1952) Let

C = {a o= Z c,-t",c,jp,l = 0 for allj},

i=—o00

so that e(axP) =1 for all x € Fg[t].
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Carlitz's Example

Forany x = 7, cith € Fy[t], we have xP = > im0 cftf” € Fq[tP].
Example.(Carlitz, 1952) Let

C = {a o= Z c,-t",c,jp,l = 0 for allj},

i=—o00

so that e(axP) =1 for all x € Fg[t].

Weyl-type inequality: if | > e(axP)| is large, can the leading coefficient «
be well-approximated by rationals with small denominators?

There are many (irrational) a € C that cannot be well-approximated by
rationals.
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Carlitz's Example

Forany x = 7, cith € Fy[t], we have xP = > im0 cftf” € Fq[tP].
Example.(Carlitz, 1952) Let

C= {a o= Z c,-t",c,jp,l = 0 for allj},

i=—o00

so that e(axP) =1 for all x € Fg[t].

Weyl-type inequality: if | > e(axP)| is large, can the leading coefficient «
be well-approximated by rationals with small denominators?

There are many (irrational) a € C that cannot be well-approximated by
rationals.

Example. For polynomials like f(x) = axP + Bx, it is not possible to
determine the Diophantine approximation of « or 8 by the Weyl sum,
since xP and x interfere with one another.
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Q: Given f(x) = > e x) € Kuo[x] supported on K C Z*, which
coefficients satisfy Weyl-type inequalities?

Suppose p =7 and K = ([1,3p + 1] NZ) U {p3 + p?,3p*, p°® + 2p°}.

To visualize it, we plot IC on the number line in the following way.

(p+2)p"5
[ ]
3ph4

(p+1)p2
P 2p3p b
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Q: Given f(x) = >k x) € Koo[x] supported on K C Z*, which
coefficients satisfy Weyl-type inequalities?

Suppose p =7 and K = ([1,3p + 1] NZ) U {p3 + p2, 3p*, p°® + 2p°}.

To visualize it, we plot IC on the number line in the following way.

(p+2)p"5
[ ]
3ph4

(p+1)p"2
P 2p3p °

Ideally, the set of indices (in green) without interference is the largest
subset of /C on which Weyl's inequality applies.
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Given a finite set I C Z", define the set (without interference)

Ix ={k € K:p1tk,kp" ¢ K for any positive integer v}.
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Given a finite set I C Z", define the set (without interference)

Ix ={k € K:p1tk,kp" ¢ K for any positive integer v}.

Define the shadow of K to be

S(K):={j € Z* : pt (j) for some r € K}.

Define K* :={k € K : ptk and p*k ¢ S(K) for any v € Z*} to
“remove” interfering coefficients (indices) on the shadow.

For Ko = K, Kn = Kn-1 \ Kj_1, we define K 1= J,0 K-

Lé-Liu-Wooley proved a Weyl-type inequality for all coefficients a; with
jekK.

Note that N
K CIx C (/C\pZ).
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Theorem (Lé-Liu-Wooley, 2023)

Fix q and a finite set Kk C Z*. There exist positive constant ¢ and C
depending only on K and q, such that following holds. Let ¢ > 0 and N
sufficiently large (in terms of IC,€,q). Let f(x) = >, cxc crx” € Ko[x]. If

S ()| = ",

deg x<N

for some 1 € (0, cN]. Then for each k € K there exist a Fq[t] and
monic g € Fgq[t] such that
eN+Cn NtC
lgay — a| < e and [g] < g
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Theorem (Lé-Liu-Wooley, 2023)

Fix q and a finite set Kk C Z*. There exist positive constant ¢ and C
depending only on K and q, such that following holds. Let ¢ > 0 and N
sufficiently large (in terms of IC,€,q). Let f(x) = >, cxc crx” € Ko[x]. If

S ()| = ",

deg x<N

for some n € (0,cN]. Then for each k € K there exist a € Fq[t] and
monic g € Fgq[t] such that
eN+Cn NtC
lgax —a| < e and |g] < gL

f(x) = apxk +--- with (k,p) = 1.
f(x) = agxt + -+ apx* +---, with (k,p) =1 and k > ¢/p.

F(X) = D 1<j<k(jp)=1 ajx/. In this case, K=T=K.
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Define the von Mangoldt function over Fg[t] by A(x) = deg(P), if
x = cP" for some monic irreducible P, zero otherwise.
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Define the von Mangoldt function over Fg[t] by A(x) = deg(P), if
x = cP" for some monic irreducible P, zero otherwise.

Theorem (Champagne-G.-Lé-Liu, 2023+)

Let K C ZT be a finite set and k € Iic. There exist constants c,, C, > 0
(depending on k, K, q) such that the following holds:

Let € > 0 and N be sufficiently large in terms of KC, € and q. Suppose that
f(u) = X exuqoy art” € Koo[u] satisfying the bound

> AX)e(f(x)| > ¢V,
xEAy

for some n with 0 < 1 < ¢, N. Then, there exist ay € Fq[t] and monic
gk € Fg[t] such that

eN+Cyn

lgkou — ak| < v and  |gi| < gVt
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Application 1: Equidistribution Theorem

Like Weyl proved the equidistribution theorem, Lé-Liu-Wooley (in the
same paper) proved the next theorem.

Theorem (Lé-Liu-Wooley, 2023)
Let f(u) = 3=, cxcuq0y @ru” be a polynomial supported on K C Z* with

coefficients in Ko,. Suppose a is irrational for some k € KC. Then the
sequence (f(x))er,[¢ is equidistributed in T.

Remarks:

Carlitz (1952) gave a family of irrational « that e(axP) =1 for all
x € Fg[t], thus equidistribution does not hold for f(x) = ax”.

Bergelson-Leibman (2015) proved a similar equidistribution theorem
independently using ergodic-theoretic methods.
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P = {x € F4[t] : monic irreducible}.

Theorem (Champagne-G.-L&-Liu, 2023+)

Let f(u) = ZrGICU{O} a,u” be a polynomial supported on K C 7™ with
coefficients in Ko,. Suppose a is irrational for some k € Iyx.. Then the
sequence (f(x))er,[¢ is equidistributed in T.
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P = {x € F4[t] : monic irreducible}.

Theorem (Champagne-G.-L&-Liu, 2023+)

Let f(u) = ZreICU{O} a,u” be a polynomial supported on K C 7™ with
coefficients in Ko,. Suppose a is irrational for some k € Iyx.. Then the
sequence (f(x))er,[¢ is equidistributed in T.

Carlitz (1952): the result may not hold for f(x) = axP.
Rhin (1972) proved the theorem when K = {1}.

Difficulty: The space P is not self-similar as Fg[t]. A Weyl-type

inequality does not immediately imply the equidistribution theorem.
We prove for the special case K= Tx = K, for which we further prove
an epsilon-free version of Weyl's inequality.

Then we prove the equidistribution theorem on Zx for general I, using
Jérémy Champagne's argument.
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Application 2: Additive inequality of irreducible powers

Let P¥,, = {x* : x is monic irreducible, deg(x*) = kN}.

Suppose (p, k) =1 and k > 2. Let N be a large number. Let A be a set
of polynomials in Fq[t] of degree less than kN and 0 < M —5<e2
q

Then we have |A + Pk, | 4log(2)+cq log(k)
kN > ) loglog(1/9)
qu

for some c4 > 0.

It is different from the analog in Z that the theorem is not true when
Pl k.

Among all monic degree-kN polynomials, the proportion (density) of
P, is very tiny. However, A + P, is significantly denser than A for
every small density set A.
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Ingredients of the Proof

Ingredients of Lé-Liu-Wooley's original method include
Weyl's shift,
Large sieve inequality (Hsu),
Vinogradov's mean value theorem (Liu-Wooley).
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Ingredients of the Proof

Ingredients of Lé-Liu-Wooley's original method include
Weyl's shift,
Large sieve inequality (Hsu),

Vinogradov's mean value theorem (Liu-Wooley).

More tools for irreducible elements:
Vaughan's identity in Fg[t].
A bootstrap argument. (lterate LLW'’s argument multiple times.)
Major arc estimates for removing the epsilon.

A nice self-duality property of K.
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To help sketch the arguments, we introduce the following notation:
Gn = {x € Fq[t] : deg(x) < N}.

This is the analog of [0, ) in integers.
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To help sketch the arguments, we introduce the following notation:
Gn = {x € Fq[t] : deg(x) < N}.

This is the analog of [0, ) in integers.

Moreover,
Ay = {x € Fg[t] : monic deg(x) = N}.

This is the analog of the dyadic interval [N,2N) in integers.
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Sketch of Lé-Liu-Wooley's argument

Lemma (Weyl's shift)

Let A C [Fy[t] be a multiset consisting of elements of degree less than N.

We have
Z e(f(x)) Z Z f(y + x))

xEAy xEAyN yEA
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Sketch of Lé-Liu-Wooley's argument

Lemma (Weyl's shift)

Let A C [Fy[t] be a multiset consisting of elements of degree less than N.

We have
Z e(f(x)) Z Z f(y + x))

xEAy xEAyN yEA

Proof. For each y with deg(y) < N, we have

D elf(x) = > elf(x+)).
xEAN x€Ay
Summing y € A, the lemma follows.

The choice of A is very flexible!

Instead of looking at a sum over Ay, we turn attention on summing
e(gx(y)) = e(f(x +y)) over y € A.
The new polynomial gx(y) is supported on the shadow. (Bad)
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Sketch of Lé-Liu-Wooley's argument

Based on Dirichlet's approximation, we take a multiset A = {¢u} that
“fit" the approximation and (Weyl) shift the sum onto A.
This turns the original sum into a bilinear sum.

It creates well-spaced (leading) coefficients {af*}, i.e. distinct
elements are at least g~ apart in T for some A > 0 (depending on the
Diophantine approximation of «).

Then, we apply Holder's inequality and Hsu's large sieve inequality to
convert the bilinear sum into Vinogradov's mean value problem.

Finally, we apply Liu-Wooley's VMVT. The final upper estimate
depends on g* (and hence the Diophantine approximation of «).
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Vaughan's identity

Define the mobius function p(x) = (—1)" if x is square-free with r distinct
monic irreducible factors, zero otherwise.
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Vaughan's identity

Define the mobius function p(x) = (—1)" if x is square-free with r distinct
monic irreducible factors, zero otherwise.

Let 1 < U,V < N. For every monic x € Fgq[t] with deg(x) < U, we have
A(x) = a1(x) + a2(x) + az(x),

where

alx)=— Y Aw)u(v), a(x)= Y deg(u)u(v),
pem ueGy
veGy

aa(x)= Y Nuu(v),
uvw=x
deg(u)>U
deg(v)>V
and the sums are over monic polynomials.

Weyl-type inequality in Fg[t]



By Vaughan's identity,

SN, F) = > Mx)e(f(x)) = S1+ S + Ss.

xEAp
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By Vaughan's identity,

SN, F) = > Mx)e(f(x)) = S1+ S + Ss.

xEAp
Type | sums: J = Z o(u) Z e(f(uv)).
ueh; vEAN_|

51 and S can be decomposed as linear combination of Type | sums.
In particular, when L = 0, this is an ordinary exponential sum.
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By Vaughan's identity,

SN, F) = > Mx)e(f(x)) = S1+ S + Ss.

xEAp
Type | sums: J = Z o(u) Z e(f(uv)).
ueh; vEAN_|

51 and S can be decomposed as linear combination of Type | sums.
In particular, when L = 0, this is an ordinary exponential sum.

Type Il sums:

5=33 wWelf(w)),

uelP; veGy_,

where P, is the set of monic irreducible polynomials of degree L.
Using triangle inequality, S3 can be bounded by Type Il sums.
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Le-Liu-Wooley estimated the ordinary exponential sum:
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Le-Liu-Wooley estimated the ordinary exponential sum:

When (k,p) =1and |>_ ¢, e(f(x))] > gN=M for some M, find a

rational approximation: e |b| < g™ and e |ba — a| < g~ kN+M,

Weyl-type inequality in Fg[t]



Le-Liu-Wooley estimated the ordinary exponential sum:

When (k,p) =1and |}, .5, e(f(x))] > g"~M for some M, find a
rational approximation: e |b| < g™ and e |ba — a| < g~ kN+M,

In our proof, we consider the problem for the bilinear sums.

Type | sums
h=Yo(u) Y e(f(uv)), for0<L<N-2M
ueh; vEAN_|
Type Il sums

JQ—Z Z v)e(f(uv)), for0<L<N/2.

uelP; veGy_;
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Le-Liu-Wooley estimated the ordinary exponential sum:

When (k,p) =1and | > e(f(x))| > g"=M for some M, find a

xeGpy

rational approximation: e |b| < g™ and e |ba — a| < g~ kN+M,
In our proof, we consider the problem for the bilinear sums.
Type | sums
h=Y () Y e(f(uv)), for0<L<N-—2M
UGAL VEAN,L
Type Il sums

JQ—Z Z v)e(f(uv)), for0 <L <N/2.

uelP; veGy_;

The difficulty is the to obtain the same quality of the rational
approximation of a simultaneously for all (large) L in the red range.
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Estimate of Type Il Sums

Consider

h=Y > w(v)e(f(uv)).

ueP; veGy_

One can partition P, = U;A; (Very flexible)

After triangle inequality, to study Js, it suffices to look at the sum

over A:
SN w(v)e(f(uv)).

uc ACP, veGy_,

These two bullet points are parallel to Weyl's shift.
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We begin with Dirichlet’s theorem. Accordingly, we pick a family of
sets A that “fit” the trivial approximation:

[LI<D 1Y Y dvelf(uv))].

i ueA;veGy_,

After Holder's inequality, Hsu's large sieve, and Liu-Wooley's
theorem, we end up having

If |Jo| > TgN=M where |p| < T, then there are (a, b) = 1 with
ba— o] < gL b < g™, (1)

The approximation (1) is worse than what we want when L > M, but this
is still much better than the trivial approximation.

Remark. The process in the second bullet point is independent of what A
is.
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Bootstrap the quality of the approximation

[RLl<D 01D D e(v)elf(uv))

i |ueA;veGy—_,

Next, we repeat LLW's argument again.

Suppose || > TgN=M. Then we have approximation (1) in hand,
which is much better than the trivial approximation.

Next, we find a new family of As that "fit" the approximation (1).
We are going to do LLW's process over this new family of A.

After Holder's inequality, Hsu's large sieve, and Liu-Wooley's
theorem, we end up having:

If |Jo| > TgVN~M then there are (a, b) = 1 with

o — a < g VM || < g, (2)
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Further remarks

For o =% cp, 2 ovegy , ¥(v)e(f(uv)), we cando M < L < N/2 at
this moment.

The barrier N/2 can be relaxed to N if one applies Vaughan's identity
to the bilinear sum and repeats the whole process again.

In the classical Vaughan/Vinogradov's Type I/ll method, type Il is
usually the more difficult one, but in our case, Type Il is the easier
one.
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Generalizing K to Z

Lemma (Self-duality)

For any v € Z" U {0} and a € K, there exists T = 7,(a) € Ky such
that

e(ax™’) = e(a(x")P") = e(rx")

Given a finite K CZT, R=Rx ={r:pfr,rp* € K for some integer v}.
Using the above lemma, we can simplify the sum as
Se( L) =L e( L)
JEK JER

Note that Z C K N'R and oj = 7; when j € T.
We know how to estimate the sum over R by LLW, since R = R.

Weyl-type inequality in Fg[t]



Thank You !
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