A Weyl-type inequality for irreducible elements in function fields, with applications

Zhenchao Ge

University of Waterloo

Lethbridge Number Theory & Combinatorics Seminar October 17, 2023

This is joint work with:

- Jérémy Champagne (University of Waterloo)
- Thái Hoàng Lê (University of Mississippi)
- Yu-Ru Liu (University of Waterloo)

Weyl differencing

Let us begin with the differencing process. Write $e(x) = e^{2\pi i x}$ for real x. Let $f(x) = \sum_{j=0}^{k} \alpha_j x^j \in \mathbb{R}[x]$. Weyl observed that

$$\left|\sum_{n=1}^{N} e(f(n))\right|^{2} = \sum_{n=1}^{N} \sum_{m=1}^{N} e(f(m) - f(n))$$
$$= N + 2\operatorname{Re} \sum_{\ell=1}^{N-1} \sum_{n=1}^{N-\ell} e(f(n+\ell) - f(n)).$$

Note that $f(n + \ell) - f(n) = g_{\ell}(n)$ is a polynomial of degree k - 1.

This process is known as Weyl differencing.

One can continue the process k - 1 times and reduce the exponent to a linear polynomial.

$$\lim_{N\to\infty}\frac{\#\{a_n:1\leq n\leq N \text{ and } \{a_n\}\in I\}}{N}=|I|,$$

where $\{a\}$ is the fractional part of *a*.

$$\lim_{N\to\infty}\frac{\#\{a_n:1\leq n\leq N \text{ and } \{a_n\}\in I\}}{N}=|I|,$$

where $\{a\}$ is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution theorem.

$$\lim_{N\to\infty}\frac{\#\{a_n:1\leq n\leq N \text{ and } \{a_n\}\in I\}}{N}=|I|,$$

where $\{a\}$ is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution theorem.

Theorem (Weyl, 1916)

If f(x) is a polynomial with real coefficients and at least one of the non-constant coefficients is irrational, then the sequence $\{f(n)\}$ is equidistributed (mod 1).

$$\lim_{N\to\infty}\frac{\#\{a_n:1\leq n\leq N \text{ and } \{a_n\}\in I\}}{N}=|I|,$$

where $\{a\}$ is the fractional part of a.

Using the differencing process, Weyl proved the classical equidistribution theorem.

Theorem (Weyl, 1916)

If f(x) is a polynomial with real coefficients and at least one of the non-constant coefficients is irrational, then the sequence $\{f(n)\}$ is equidistributed (mod 1).

In the same paper, using the idea of differencing, Weyl also proved the famous inequality(Weyl's ineq), although it was given in a less explicit form.

Theorem (Weyl's inequality, an explicit form)

Suppose that $f(x) = \sum_{j=0}^{k} \alpha_j x^j \in \mathbb{R}[x]$, and that $|\alpha_k - a/q| < q^{-2}$, (a, q) = 1. Then for any $\varepsilon > 0$,

$$\sum_{n=1}^{N} e(f(n)) \ll_{k,\varepsilon} N^{1+\varepsilon} \left(\frac{1}{q} + \frac{1}{N} + \frac{q}{N^{k}}\right)^{2^{1-k}}$$

Theorem (Weyl's inequality, an inverse form)

Given $0 < \eta \le 2^{1-k}$, for any $\varepsilon > 0$, if N is sufficiently large in terms of ϵ and η , and

$$\left|\sum_{n=1}^{N} e(f(n))\right| > N^{1-\eta},$$

then there are (a, q) = 1, such that

$$q < Z_{\eta,arepsilon,k} = {\sf N}^{arepsilon+2^{k-1}\eta} \quad ext{ and } \quad |qlpha_k - {\sf a}| < Z_{\eta,arepsilon,k}/{\sf N}^k.$$

Theorem (Harman)

Suppose that $f(x) = \sum_{j=0}^{k} \alpha_j x^j \in \mathbb{R}[x]$, and that $|\alpha_k - a/q| < q^{-2}$, (a, q) = 1. Then for any $\varepsilon > 0$,

$$\sum_{p \leq N} (\log p) e(f(p)) \ll_{k,\varepsilon} N^{1+\varepsilon} \left(\frac{1}{q} + \frac{1}{N^{1/2}} + \frac{q}{N^k}\right)^{4^{1-k}}$$

As a key ingredient in the Hardy-Littlewood Method, the Weyl-type inequality is applied in many problems.

- Waring's problem, Goldbach's problem...
- Diophantine inequalities, Diophantine equations...
- Sumsets problems, Sequences...
- Riemann zeta-function, *L*-functions...

Ring of polynomials over \mathbb{F}_q

Let $\mathbb{F}_q[t]$ be the polynomial ring over a finite field with q elements and characteristic p.

Let

$$\mathbb{K} = \mathbb{F}_q(t) = \left\{ \frac{x}{y} : x, y \in \mathbb{F}_q[t], y \neq 0 \right\}$$

be the field of fractions, and let

$$\mathbb{K}_{\infty} = \mathbb{F}_q((1/t)) = \left\{ \sum_{j=-\infty}^{N} a_j t^j : a_j \in \mathbb{F}_q, N \in \mathbb{Z} \right\}.$$

For $\alpha = \sum_{j=-\infty}^{N} a_j t^j \in \mathbb{K}_{\infty}$ with $a_N \neq 0$, we define $\operatorname{ord}(\alpha) = N$ and $|\alpha| = q^{\operatorname{ord}\alpha}$. In particular, $\operatorname{ord}(0) = -\infty$.

Ring of polynomials over \mathbb{F}_q

Let $\mathbb{F}_q[t]$ be the polynomial ring over a finite field with q elements and characteristic p.

Let

$$\mathbb{K} = \mathbb{F}_q(t) = \left\{ \frac{x}{y} : x, y \in \mathbb{F}_q[t], y \neq 0 \right\}$$

be the field of fractions, and let

$$\mathbb{K}_{\infty} = \mathbb{F}_q((1/t)) = \left\{ \sum_{j=-\infty}^{N} a_j t^j : a_j \in \mathbb{F}_q, N \in \mathbb{Z} \right\}.$$

For $\alpha = \sum_{j=-\infty}^{N} a_j t^j \in \mathbb{K}_{\infty}$ with $a_N \neq 0$, we define $\operatorname{ord}(\alpha) = N$ and $|\alpha| = q^{\operatorname{ord}\alpha}$. In particular, $\operatorname{ord}(0) = -\infty$.

Here, $\mathbb{F}_q[t]$, \mathbb{K} , \mathbb{K}_∞ play the roles of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

Exponential function on \mathbb{K}_∞

Define $\{\alpha\} = \sum_{j=-\infty}^{-1} a_j t^j$ to be the **fractional part** of α and let $\operatorname{res}(\alpha) = a_{-1}$. Then,

$$\mathbb{T} = \left\{ \sum_{j=-\infty}^{-1} \mathsf{a}_j t^j : \mathsf{a}_j \in \mathbb{F}_q
ight\}$$

is the analog of [0,1) in \mathbb{R} .

Exponential function on \mathbb{K}_∞

Define $\{\alpha\} = \sum_{j=-\infty}^{-1} a_j t^j$ to be the **fractional part** of α and let $\operatorname{res}(\alpha) = a_{-1}$. Then,

$$\mathbb{T} = \left\{ \sum_{j=-\infty}^{-1} \mathsf{a}_j t^j : \mathsf{a}_j \in \mathbb{F}_q
ight\}$$

is the analog of [0,1) in \mathbb{R} .

Let $tr : \mathbb{F}_q \to \mathbb{F}_p$ denote the trace map. Then for $\alpha \in \mathbb{K}_{\infty}$, the exponential function is defined as

$$e(\alpha) := e^{2\pi i \cdot \operatorname{tr}(\operatorname{res}\alpha)/p}$$

This is an additive character on \mathbb{K}_{∞} and analogous to $e^{2\pi i x}$ in \mathbb{R} . We can use this function to study additive problems in function fields.

Weyl differencing is problematic in $\mathbb{F}_q[t]$.

 $\ensuremath{\mathbf{Q}}\xspace$ Can we use the differencing process to prove an analog of Weyl's inequality?

Weyl differencing is problematic in $\mathbb{F}_q[t]$.

 $\ensuremath{\mathbf{Q}}\xspace$ Can we use the differencing process to prove an analog of Weyl's inequality?

Let $f(x) = \sum_{j=1}^{k} \alpha_j x^j$, $\alpha_j \in \mathbb{K}_{\infty}$.

- If k q</sub>), then one can repeat Weyl differencing and prove analogous results.
- If k ≥ p, Weyl differencing is problematic. Look at the leading coefficient of f(x). If we do f(x + h) f(x), k 1 times, we end up having a factor of k! in the final leading coefficient, which is 0 when k ≥ p.

Weyl differencing is problematic in $\mathbb{F}_q[t]$.

 $\ensuremath{\mathbf{Q}}\xspace$ Can we use the differencing process to prove an analog of Weyl's inequality?

Let
$$f(x) = \sum_{j=1}^{k} \alpha_j x^j$$
, $\alpha_j \in \mathbb{K}_{\infty}$.

- If k q</sub>), then one can repeat Weyl differencing and prove analogous results.
- If k ≥ p, Weyl differencing is problematic. Look at the leading coefficient of f(x). If we do f(x + h) f(x), k 1 times, we end up having a factor of k! in the final leading coefficient, which is 0 when k ≥ p.

Y.-R. Liu and T. Wooley (2010), in their *Waring's problem* paper, overcame the barrier of k < p in function fields, by using large sieve and Vinogradov's mean value theorem (VMVT).

Carlitz's Example

For any $x = \sum_{j=0}^n c_j t^j \in \mathbb{F}_q[t]$, we have $x^p = \sum_{j=0}^n c_j^p t^{jp} \in \mathbb{F}_q[t^p]$.

Example.(Carlitz, 1952) Let

$$\mathcal{C} = \Big\{ \alpha : \alpha = \sum_{i=-\infty}^{n} c_i t^i, c_{-jp-1} = 0 \text{ for all } j \Big\},\$$

so that $e(\alpha x^p) = 1$ for all $x \in \mathbb{F}_q[t]$.

Carlitz's Example

For any $x = \sum_{j=0}^{n} c_j t^j \in \mathbb{F}_q[t]$, we have $x^p = \sum_{j=0}^{n} c_j^p t^{jp} \in \mathbb{F}_q[t^p]$.

Example.(Carlitz, 1952) Let

$$\mathcal{C} = \Big\{ \alpha : \alpha = \sum_{i=-\infty}^{n} c_i t^i, c_{-jp-1} = 0 \text{ for all } j \Big\},$$

so that $e(\alpha x^p) = 1$ for all $x \in \mathbb{F}_q[t]$.

Weyl-type inequality: if $|\sum e(\alpha x^p)|$ is large, can the leading coefficient α be well-approximated by rationals with small denominators? There are many (irrational) $\alpha \in C$ that cannot be well-approximated by rationals.

Carlitz's Example

For any $x = \sum_{j=0}^{n} c_j t^j \in \mathbb{F}_q[t]$, we have $x^p = \sum_{j=0}^{n} c_j^p t^{jp} \in \mathbb{F}_q[t^p]$.

Example.(Carlitz, 1952) Let

$$\mathcal{C} = \Big\{ \alpha : \alpha = \sum_{i=-\infty}^{n} c_i t^i, c_{-jp-1} = 0 \text{ for all } j \Big\},$$

so that $e(\alpha x^p) = 1$ for all $x \in \mathbb{F}_q[t]$.

Weyl-type inequality: if $|\sum e(\alpha x^p)|$ is large, can the leading coefficient α be well-approximated by rationals with small denominators? There are many (irrational) $\alpha \in C$ that cannot be well-approximated by rationals.

Example. For polynomials like $f(x) = \alpha x^p + \beta x$, it is not possible to determine the Diophantine approximation of α or β by the Weyl sum, since x^p and x interfere with one another.

Q: Given $f(x) = \sum_{j \in \mathcal{K}} \alpha_j x^j \in \mathbb{K}_{\infty}[x]$ supported on $\mathcal{K} \subset \mathbb{Z}^+$, which coefficients satisfy Weyl-type inequalities?

Example

Suppose p = 7 and $\mathcal{K} = ([1, 3p + 1] \cap \mathbb{Z}) \cup \{p^3 + p^2, 3p^4, p^6 + 2p^5\}.$

To visualize it, we plot ${\mathcal K}$ on the number line in the following way.

Q: Given $f(x) = \sum_{j \in \mathcal{K}} \alpha_j x^j \in \mathbb{K}_{\infty}[x]$ supported on $\mathcal{K} \subset \mathbb{Z}^+$, which coefficients satisfy Weyl-type inequalities?

Example

Suppose p = 7 and $\mathcal{K} = ([1, 3p + 1] \cap \mathbb{Z}) \cup \{p^3 + p^2, 3p^4, p^6 + 2p^5\}.$

To visualize it, we plot ${\cal K}$ on the number line in the following way.

Ideally, the set of indices (in green) without interference is the largest subset of \mathcal{K} on which Weyl's inequality applies.

Given a finite set $\mathcal{K} \subset \mathbb{Z}^+$, define the set (without interference)

 $\mathcal{I}_{\mathcal{K}} = \{ k \in \mathcal{K} : p \nmid k, kp^{v} \notin \mathcal{K} \text{ for any positive integer } v \}.$

Given a finite set $\mathcal{K} \subset \mathbb{Z}^+$, define the set (without interference)

 $\mathcal{I}_{\mathcal{K}} = \{ k \in \mathcal{K} : p \nmid k, kp^{v} \notin \mathcal{K} \text{ for any positive integer } v \}.$

1 Define the **shadow** of *K* to be
$$S(K) := \{j \in \mathbb{Z}^+ : p \nmid \binom{r}{j} \text{ for some } r \in K\}.$$

Obefine K^{*} := {k ∈ K : p ∤ k and p^v k ∉ S(K) for any v ∈ Z⁺} to "remove" interfering coefficients (indices) on the shadow.

So For $\mathcal{K}_0 = \mathcal{K}$, $\mathcal{K}_n = \mathcal{K}_{n-1} \setminus \mathcal{K}^*_{n-1}$, we define $\widetilde{\mathcal{K}} := \bigcup_{n \ge 0} \mathcal{K}^*_n$.

Lê-Liu-Wooley proved a Weyl-type inequality for all coefficients α_j with $j \in \widetilde{\mathcal{K}}$.

Note that

$$\widetilde{\mathcal{K}} \subset \mathcal{I}_{\mathcal{K}} \subset (\mathcal{K} \setminus p\mathbb{Z}).$$

Theorem (Lê-Liu-Wooley, 2023)

Fix q and a finite set $\mathcal{K} \subset \mathbb{Z}^+$. There exist positive constant c and C depending only on \mathcal{K} and q, such that following holds. Let $\epsilon > 0$ and N sufficiently large (in terms of \mathcal{K}, ϵ, q). Let $f(x) = \sum_{r \in \mathcal{K}} \alpha_r x^r \in \mathbb{K}_{\infty}[x]$. If

$$\left|\sum_{\deg x < N} e(f(x))\right| \ge q^{N-\eta},$$

for some $\eta \in (0, cN]$. Then for each $k \in \widetilde{\mathcal{K}}$ there exist $a \in \mathbb{F}_q[t]$ and monic $g \in \mathbb{F}_q[t]$ such that

$$|glpha_k - \pmb{a}| < rac{q^{\epsilon N + C\eta}}{q^{kN}} \quad ext{and} \quad |g| \leq q^{\epsilon N + C\eta}.$$

Theorem (Lê-Liu-Wooley, 2023)

Fix q and a finite set $\mathcal{K} \subset \mathbb{Z}^+$. There exist positive constant c and C depending only on \mathcal{K} and q, such that following holds. Let $\epsilon > 0$ and N sufficiently large (in terms of \mathcal{K}, ϵ, q). Let $f(x) = \sum_{r \in \mathcal{K}} \alpha_r x^r \in \mathbb{K}_{\infty}[x]$. If

$$\left|\sum_{\deg x < N} e(f(x))\right| \ge q^{N-\eta},$$

for some $\eta \in (0, cN]$. Then for each $k \in \widetilde{\mathcal{K}}$ there exist $a \in \mathbb{F}_q[t]$ and monic $g \in \mathbb{F}_q[t]$ such that

$$|glpha_k-{\sf a}|<rac{q^{\epsilon N+C\eta}}{q^{kN}} \quad ext{ and } \quad |g|\leq q^{\epsilon N+C\eta}.$$

•
$$f(x) = \alpha_k x^k + \cdots$$
 with $(k, p) = 1$.

• $f(x) = \alpha_{\ell} x^{\ell} + \cdots + \alpha_{k} x^{k} + \cdots$, with (k, p) = 1 and $k > \ell/p$.

• $f(x) = \sum_{1 \le j \le k, (j,p)=1} \alpha_j x^j$. In this case, $\widetilde{\mathcal{K}} = \mathcal{I} = \mathcal{K}$.

Define the von Mangoldt function over $\mathbb{F}_q[t]$ by $\Lambda(x) = \deg(P)$, if $x = cP^r$ for some monic irreducible P, zero otherwise.

Define the von Mangoldt function over $\mathbb{F}_q[t]$ by $\Lambda(x) = \deg(P)$, if $x = cP^r$ for some monic irreducible P, zero otherwise.

Theorem (Champagne-G.-Lê-Liu, 2023+)

Let $\mathcal{K} \subset \mathbb{Z}^+$ be a finite set and $k \in \mathcal{I}_{\mathcal{K}}$. There exist constants $c_k, C_k > 0$ (depending on k, \mathcal{K}, q) such that the following holds: Let $\epsilon > 0$ and N be sufficiently large in terms of \mathcal{K} , ϵ and q. Suppose that $f(u) = \sum_{r \in \mathcal{K} \cup \{0\}} \alpha_r u^r \in \mathbb{K}_{\infty}[u]$ satisfying the bound

$$\sum_{x\in\mathbb{A}_N}\Lambda(x)e(f(x))\bigg|\geq q^{N-\eta},$$

for some η with $0 < \eta \le c_k N$. Then, there exist $a_k \in \mathbb{F}_q[t]$ and monic $g_k \in \mathbb{F}_q[t]$ such that

$$|g_k lpha_k - a_k| < rac{q^{\epsilon N + C_k \eta}}{q^{k N}} \qquad ext{and} \qquad |g_k| \leq q^{\epsilon N + C_k \eta}.$$

Application 1: Equidistribution Theorem

Like Weyl proved the equidistribution theorem, Lê-Liu-Wooley (in the same paper) proved the next theorem.

Theorem (Lê-Liu-Wooley, 2023)

Let $f(u) = \sum_{r \in \mathcal{K} \cup \{0\}} \alpha_r u^r$ be a polynomial supported on $\mathcal{K} \subset \mathbb{Z}^+$ with coefficients in \mathbb{K}_{∞} . Suppose α_k is irrational for some $k \in \widetilde{\mathcal{K}}$. Then the sequence $(f(x))_{x \in \mathbb{F}_q[t]}$ is equidistributed in \mathbb{T} .

Remarks:

- Carlitz (1952) gave a family of irrational α that e(αx^p) = 1 for all x ∈ 𝔽_q[t], thus equidistribution does not hold for f(x) = αx^p.
- **Bergelson-Leibman** (2015) proved a similar equidistribution theorem independently using ergodic-theoretic methods.

 $\mathbb{P} = \{x \in \mathbb{F}_q[t] : \text{monic irreducible}\}.$

Theorem (Champagne-G.-Lê-Liu, 2023+)

Let $f(u) = \sum_{r \in \mathcal{K} \cup \{0\}} \alpha_r u^r$ be a polynomial supported on $\mathcal{K} \subset \mathbb{Z}^+$ with coefficients in \mathbb{K}_{∞} . Suppose α_k is irrational for some $k \in \mathcal{I}_{\mathcal{K}}$. Then the sequence $(f(x))_{x \in \mathbb{F}_q[t]}$ is equidistributed in \mathbb{T} .

 $\mathbb{P} = \{x \in \mathbb{F}_q[t] : \text{monic irreducible}\}.$

Theorem (Champagne-G.-Lê-Liu, 2023+)

Let $f(u) = \sum_{r \in \mathcal{K} \cup \{0\}} \alpha_r u^r$ be a polynomial supported on $\mathcal{K} \subset \mathbb{Z}^+$ with coefficients in \mathbb{K}_{∞} . Suppose α_k is irrational for some $k \in \mathcal{I}_{\mathcal{K}}$. Then the sequence $(f(x))_{x \in \mathbb{F}_q[t]}$ is equidistributed in \mathbb{T} .

- **Carlitz** (1952): the result may not hold for $f(x) = \alpha x^{p}$.
- Rhin (1972) proved the theorem when $\mathcal{K} = \{1\}$.
- Difficulty: The space

 P is not self-similar as
 F_q[t]. A Weyl-type
 inequality does not immediately imply the equidistribution theorem.
 - 1 We prove for the special case $\widetilde{\mathcal{K}} = \mathcal{I}_{\mathcal{K}} = \mathcal{K}$, for which we further prove an epsilon-free version of Weyl's inequality.
 - Phen we prove the equidistribution theorem on I_K for general K, using Jérémy Champagne's argument.

Application 2: Additive inequality of irreducible powers

Let $\mathbb{P}_{kN}^k = \{x^k : x \text{ is monic irreducible}, \deg(x^k) = kN\}.$

Theorem (G.)

$$\begin{split} & \text{Suppose } (p,k) = 1 \text{ and } k \geq 2. \text{ Let } N \text{ be a large number. Let } \mathcal{A} \text{ be a set} \\ & \text{ of polynomials in } \mathbb{F}_q[t] \text{ of degree less than } kN \text{ and } 0 < \frac{|\mathcal{A}|}{q^{kN}} = \delta < e^{-2}. \\ & \text{ Then we have} \\ & \frac{|\mathcal{A} + \mathbb{P}_{kN}^k|}{q^{kN}} > \delta^{\frac{4 \log(2) + c_q \log(k)}{\log \log(1/\delta)}} \\ & \text{ for some } c_q > 0. \end{split}$$

- It is different from the analog in \mathbb{Z} that the theorem is not true when $p \mid k$.
- Among all monic degree-kN polynomials, the proportion (density) of \mathbb{P}_{kN}^k is very tiny. However, $\mathcal{A} + \mathbb{P}_{kN}^k$ is significantly denser than \mathcal{A} for every small density set \mathcal{A} .

Ingredients of Lê-Liu-Wooley's original method include

- Weyl's shift,
- Large sieve inequality (Hsu),
- Vinogradov's mean value theorem (Liu-Wooley).

Ingredients of Lê-Liu-Wooley's original method include

- Weyl's shift,
- Large sieve inequality (Hsu),
- Vinogradov's mean value theorem (Liu-Wooley).

More tools for irreducible elements:

- Vaughan's identity in $\mathbb{F}_q[t]$.
- A bootstrap argument. (Iterate LLW's argument multiple times.)
- Major arc estimates for removing the epsilon.
- A nice self-duality property of \mathbb{K}_{∞} .

To help sketch the arguments, we introduce the following notation:

$$\mathbb{G}_N := \{x \in \mathbb{F}_q[t] : \deg(x) < N\}.$$

This is the analog of [0, N) in integers.

To help sketch the arguments, we introduce the following notation:

$$\mathbb{G}_{N} := \{ x \in \mathbb{F}_{q}[t] : \deg(x) < N \}.$$

This is the analog of [0, N) in integers.

Moreover,

$$\mathbb{A}_N := \{ x \in \mathbb{F}_q[t] : \text{monic } \deg(x) = N \}.$$

This is the analog of the dyadic interval [N, 2N) in integers.

Sketch of Lê-Liu-Wooley's argument

Lemma (Weyl's shift)

Let $\mathcal{A} \subset \mathbb{F}_q[t]$ be a multiset consisting of elements of degree less than N. We have

$$\sum_{x \in \mathbb{A}_N} e(f(x)) = \#(\mathcal{A})^{-1} \sum_{x \in \mathbb{A}_N} \sum_{y \in \mathcal{A}} e(f(y+x))$$

Lemma (Weyl's shift)

x

Let $\mathcal{A} \subset \mathbb{F}_q[t]$ be a multiset consisting of elements of degree less than N. We have

$$\sum_{x\in\mathbb{A}_N} e(f(x)) = \#(\mathcal{A})^{-1} \sum_{x\in\mathbb{A}_N} \sum_{y\in\mathcal{A}} e(f(y+x))$$

Proof. For each y with deg(y) < N, we have

$$\sum_{x \in \mathbb{A}_N} e(f(x)) = \sum_{x \in \mathbb{A}_N} e(f(x+y)).$$

Summing $y \in A$, the lemma follows.

- The choice of \mathcal{A} is very flexible!
- Instead of looking at a sum over \mathbb{A}_N , we turn attention on summing $e(g_x(y)) = e(f(x+y))$ over $y \in \mathcal{A}$.
- The new polynomial $g_x(y)$ is supported on the **shadow**. (Bad)

Sketch of Lê-Liu-Wooley's argument

- Based on Dirichlet's approximation, we take a multiset $\mathcal{A} = \{\ell u\}$ that "fit" the approximation and (Weyl) shift the sum onto \mathcal{A} .
 - This turns the original sum into a bilinear sum.
 - It creates well-spaced (leading) coefficients {αℓ^k}, i.e. distinct elements are at least q^{-λ} apart in T for some λ > 0 (depending on the Diophantine approximation of α).
- O Then, we apply Hölder's inequality and Hsu's large sieve inequality to convert the bilinear sum into Vinogradov's mean value problem.
- Similar Finally, we apply Liu-Wooley's VMVT. The final upper estimate depends on q^{λ} (and hence the Diophantine approximation of α).

Vaughan's identity

Define the mobius function $\mu(x) = (-1)^r$ if x is square-free with r distinct monic irreducible factors, zero otherwise.

Vaughan's identity

Define the mobius function $\mu(x) = (-1)^r$ if x is square-free with r distinct monic irreducible factors, zero otherwise.

Let $1 \leq U, V \leq N$. For every monic $x \in \mathbb{F}_q[t]$ with deg(x) < U, we have

$$\Lambda(x) = a_1(x) + a_2(x) + a_3(x),$$

where

$$a_{1}(x) = -\sum_{\substack{uvw=x\\ u \in \mathbb{G}_{U}\\ v \in \mathbb{G}_{V}}} \Lambda(u)\mu(v), \qquad a_{2}(x) = \sum_{\substack{uv=x\\ u \in \mathbb{G}_{V}}} \deg(u)\mu(v),$$
$$a_{3}(x) = \sum_{\substack{uvw=x\\ \deg(u) \ge U\\ \deg(v) \ge V}} \Lambda(u)\mu(v),$$

and the sums are over monic polynomials.

By Vaughan's identity,

$$S(N,f) = \sum_{x \in \mathbb{A}_N} \Lambda(x) e(f(x)) = S_1 + S_2 + S_3.$$

By Vaughan's identity,

$$S(N,f) = \sum_{x \in \mathbb{A}_N} \Lambda(x) e(f(x)) = S_1 + S_2 + S_3.$$

• Type I sums:
$$J_1 = \sum_{u \in \mathbb{A}_L} \phi(u) \sum_{v \in \mathbb{A}_{N-L}} e(f(uv)).$$

 S_1 and S_2 can be decomposed as linear combination of Type I sums. In particular, when L = 0, this is an ordinary exponential sum. By Vaughan's identity,

$$S(N,f) = \sum_{x \in \mathbb{A}_N} \Lambda(x) e(f(x)) = S_1 + S_2 + S_3.$$

• Type I sums:
$$J_1 = \sum_{u \in \mathbb{A}_L} \phi(u) \sum_{v \in \mathbb{A}_{N-L}} e(f(uv)).$$

 S_1 and S_2 can be decomposed as linear combination of Type I sums. In particular, when L = 0, this is an ordinary exponential sum.

Type II sums:

$$J_2 = \sum_{u \in \mathbb{P}_L} \sum_{v \in \mathbb{G}_{N-L}} \psi(v) e(f(uv)),$$

where \mathbb{P}_L is the set of monic irreducible polynomials of degree *L*. Using triangle inequality, S_3 can be bounded by Type II sums.

• When (k, p) = 1 and $|\sum_{x \in \mathbb{G}_N} e(f(x))| > q^{N-M}$ for some M, find a rational approximation: • $|b| < q^M$ and • $|b\alpha - a| < q^{-kN+M}$.

• When (k, p) = 1 and $|\sum_{x \in \mathbb{G}_N} e(f(x))| > q^{N-M}$ for some M, find a rational approximation: • $|b| < q^M$ and • $|b\alpha - a| < q^{-kN+M}$.

In our proof, we consider the problem for the bilinear sums.

Type I sums

$$J_1 = \sum_{u \in \mathbb{A}_L} \phi(u) \sum_{v \in \mathbb{A}_{N-L}} e(f(uv)), \quad ext{for } 0 \leq L \leq N - 2M$$

• Type II sums

$$J_2 = \sum_{u \in \mathbb{P}_L} \sum_{v \in \mathbb{G}_{N-L}} \psi(v) e(f(uv)), \quad \text{for } 0 \leq L \leq N/2.$$

• When (k, p) = 1 and $|\sum_{x \in \mathbb{G}_N} e(f(x))| > q^{N-M}$ for some M, find a rational approximation: • $|b| < q^M$ and • $|b\alpha - a| < q^{-kN+M}$.

In our proof, we consider the problem for the bilinear sums.

Type I sums

$$J_1 = \sum_{u \in \mathbb{A}_L} \phi(u) \sum_{v \in \mathbb{A}_{N-L}} e(f(uv)), \quad ext{for } \mathbf{0} \leq L \leq N - 2M$$

Type II sums

$$J_2 = \sum_{u \in \mathbb{P}_L} \sum_{v \in \mathbb{G}_{N-L}} \psi(v) e(f(uv)), \quad \text{for } 0 \leq L \leq N/2.$$

The difficulty is the to obtain the same quality of the rational approximation of α_k simultaneously for all (large) *L* in the red range.

Consider

$$J_2 = \sum_{u \in \mathbb{P}_L} \sum_{v \in \mathbb{G}_{N-L}} \psi(v) e(f(uv)).$$

- One can partition $\mathbb{P}_L = \cup_i \mathcal{A}_i$ (Very flexible)
- After triangle inequality, to study J₂, it suffices to look at the sum over A:

$$\sum_{u\in\mathcal{A}\subset\mathbb{P}_L}\sum_{v\in\mathbb{G}_{N-L}}\psi(v)e(f(uv))$$

These two bullet points are parallel to Weyl's shift.

• We begin with Dirichlet's theorem. Accordingly, we pick a family of sets A that "fit" the trivial approximation:

$$|J_2| \leq \sum_i \left| \sum_{u \in \mathcal{A}_i} \sum_{v \in \mathbb{G}_{N-L}} \psi(v) e(f(uv)) \right|.$$

• After Holder's inequality, Hsu's large sieve, and Liu-Wooley's theorem, we end up having

If $|J_2| > Tq^{N-M}$ where $|\psi| \leq T$, then there are (a,b) = 1 with

$$|b\alpha - a| < q^{-kN+L}, \quad |b| < q^M.$$
(1)

The approximation (1) is worse than what we want when L > M, but this is still much better than the trivial approximation.

Remark. The process in the second bullet point is independent of what \mathcal{A} is.

Bootstrap the quality of the approximation

$$|J_2| \leq \sum_i \left| \sum_{u \in \mathcal{A}_i} \sum_{v \in \mathbb{G}_{N-L}} \psi(v) e(f(uv)) \right|$$

Next, we repeat LLW's argument again.

- Suppose $|J_2| > Tq^{N-M}$. Then we have approximation (1) in hand, which is much better than the trivial approximation.
- Next, we find a new family of As that "fit" the approximation (1). We are going to do LLW's process over this new family of A.
- After Holder's inequality, Hsu's large sieve, and Liu-Wooley's theorem, we end up having:

If $|J_2| > Tq^{N-M}$ then there are (a,b) = 1 with

$$|b\alpha - a| < q^{-kN+M}, \quad |b| < q^M.$$
⁽²⁾

• For $J_2 = \sum_{u \in \mathbb{P}_L} \sum_{v \in \mathbb{G}_{N-L}} \psi(v) e(f(uv))$, we can do $M \le L \le N/2$ at this moment.

The barrier N/2 can be relaxed to N if one applies Vaughan's identity to the bilinear sum and repeats the whole process again.

 In the classical Vaughan/Vinogradov's Type I/II method, type II is usually the more difficult one, but in our case, Type II is the easier one.

Generalizing $\tilde{\mathcal{K}}$ to \mathcal{I}

Lemma (Self-duality)

For any $v \in \mathbb{Z}^+ \cup \{0\}$ and $\alpha \in \mathbb{K}_{\infty}$, there exists $\tau = \tau_v(\alpha) \in \mathbb{K}_{\infty}$ such that

$$e(\alpha x^{rp^{\nu}}) = e(\alpha(x^{r})^{p^{\nu}}) = e(\tau x^{r})$$

Given a finite $\mathcal{K} \subset \mathbb{Z}^+$, $\mathcal{R} = \mathcal{R}_{\mathcal{K}} = \{r : p \nmid r, rp^v \in \mathcal{K} \text{ for some integer } v\}.$

Using the above lemma, we can simplify the sum as

$$\sum_{x} e\Big(\sum_{j\in\mathcal{K}} \alpha_j x^j\Big) = \sum_{x} e\Big(\sum_{j\in\mathcal{R}} \tau_j x^j\Big).$$

Note that $\mathcal{I} \subseteq \mathcal{K} \cap \mathcal{R}$ and $\alpha_j = \tau_j$ when $j \in \mathcal{I}$.

We know how to estimate the sum over \mathcal{R} by LLW, since $\tilde{\mathcal{R}} = \mathcal{R}$.

Thank You !