Consecutive sums of two squares in anithmetic progressions.
(joint with Noam Kimmel)
Throughout, fix q modulus and assume $(a_1q_1)=1$.
Q: Are there infinitely many primes $p \equiv a \mod q$?
A: Yes. (Dirichtet) Landau, Iwaniec
Stronger: equidistribution
$\pi(x;a,q) := \# \{ p \leq x : p \equiv a \mod q \}$
$\sim \frac{\pi(x)}{\varphi(x)}$
σ
$\underline{Q}: \pi(x; (a_1, a_2), q) := \# \{ p \leq x : p \equiv a_1 \mod q \}$
$T(x_1(a_1, a_2), q) \longrightarrow 0 ag x \rightarrow 0$
Q: $\pi(x;(a_1,\ldots,a_r),q) := \# \{p_n \le x: p_{n+i-1} \equiv a_i \mod q\}$
-3 co $\frac{2}{3}$
$\frac{C_{\alpha_1}}{1} \sim \frac{\pi(x_1)}{\varphi(a_1)} \sim \frac{\pi(x_2)}{a_{\beta_2}} \sigma(x_2)$
vory. Lue to second-order terms, repeated values are less

L common.
Easy Lemma: If $\Psi(q) = 2$ and $\alpha_1 \neq \alpha_2 \mod q$,
$\int then tr(x; (a_1, a_2), q) \longrightarrow \infty.$
Thum (Shiu, Banks-Freizeng-Turnege-Butterbayh):
$\left[\pi(x; (a,, a), q) \rightarrow \infty \text{for any length.} \right]$
This (Maynard): $\pi(x; (a,, a), q) \gg \pi(x).$
Open Qn: Show $T(x; a, q) \rightarrow \infty$ in any other case.
Sums of two squares:
$F = 1, 2, 4, 5, 8, 9, 10, 13, \dots$
$= \{ z \in \mathbb{N} : z = x^2 + y^2, x, y \in \mathbb{N} \}$
This (fermat): $n \in E \in n = \prod_{p} p^{v_p}$, v_p even whenever
$p \ge 3 \mod 4$
$E = (E_n)$ where $E_n \leq E_{n+1}$
Thm (Kimmel, K.): Ya, b, c mod q,
$\Gamma(\mathcal{X}(a,b,c),q) \rightarrow \mathfrak{A} \text{as} \mathcal{X} \rightarrow \mathfrak{A}.$
Thm (Kimmel, K.): ta, b mod q,
$\sigma(x; (a,, a, b,, b), q) \rightarrow \infty$ for any lengths of als and bs.

This (Han)	$e_{\rm M}$): H h, $h \in A$
	$\sum_{n \in \mathbb{N}} \mathbb{I}_{\mathbb{E}}(n) \mathbb{I}_{\mathbb{E}}(n+k) \mathbb{I}_{\mathbb{E}}(n+k) \longrightarrow \infty.$
Note: tech	mights from quadratic forms are very helpful for
SUMS	of two squares.
Eg: inf	F' ly many $n \omega / n-1, n, n+1 \in E$.
Pf:	lf n-1, n, n+1 is an example
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	$n^{2}-1$, n^{2} , $n^{2}+1$ is another 11 (n-1)(n+1)
· · · · · · · ·	8,9,10 works.
S <u>psiler</u> : W	2 can estimate certain weighted correlations of $[2+1]$.
Back to	<u>> primes</u> :
Ideas of	proof (BFT/M): "admissible"
Maunadi	For methy, let k be big enough. For each k-twole

F co'ly many n s.t. at least m of the values Li(n),, Li(n) are all prime.
Trick to get BFT:
() Choose $2L_i(n) = q_n + a_i $ admissible, with $a_i \equiv a \mod q$
and $a_1 < \cdots < a_k$.
(2) Define $S = \{ t \in \mathbb{N} : t \neq a_i \neq i, a_i < t < a_k \}$
$\mathcal{P} = \{q_t : t \in S\}$ of distinct primes $q_t \neq q$
$S_{i+}, t \neq a_{i} \mod q$
3 CRT: 7 A mod Q s.t.
$qA+t \equiv 0 \mod q_t \forall t$
(4) $L_i(n) = qQn + qA + a_i \xi$ is admissible
and qQn+qA+t is never prime for tes.

m> Out put	of Mayne	ard's thm	fer	Ìiln)	are
conse outive.	· · · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·	• • • •	· · · · · · · · ·
$D+D: 9_{1}$	$= 3 \mod 1$	H		• • • •	
	· · · · · · · · · · · · · · · · · · ·	• • • • • • •	•••••	• • • •	• • • • • • • •
	1 F	· · · · · · · · ·	· · · · · · · ·	• • • •	· · · · · · · · ·
9.A	$+t = f_t$	mod q2	•••••••		
· · · · · · · · · · · · · ·	· · · · · · · · ·		· · · · · ·	• • • •	
Ξo	ΞQ	Ξα	Ξα	ΞQ	· · · · · · · · ·
· · · · · · · · · · · · · · ·		· · · · · · · ·	· · · · · · ·		· · · · · · · · ·
		3		• • • •	
			• • • • • •	• • • •	• • • • • • • •
· · · · · · · · · · · · · · ·	ミの	5 a		0	· · · · · · · · ·
		• • • • • • •		• • • •	
Ξα.	E b	Ξα	= b =		• • • • • • • •
· · · · · · · · · · · · · · ·		· · · · · · · ·	· · · · · · ·	· · · · ·	· · · · · · · · ·
		• • • • • • •	ask	for a	pink
	Ξα	ΞΔ	•••••	prime	Grd
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · ·	ce print.
1 dea: Divide	the tuple	into bo	iskets ar	d look	for
a prome	in each	basket.	· · · · · ·	• • • •	••••••
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · ·	· · · · · · · · ·
Upean i		od O		k. L. □ Ξ	lamod o
· · · · · · · · · · · · · · · · · · ·	• • • • • • •		· · · · ·		•••••

$L_1(n) L_k(n) L_{2k}(n) L_{2k}(n)$
infly often 7 a prime in each basket.
How to find primes in baskets:
Maynard's original idea.
$S := \sum_{n \sim N} \left(\sum_{i=1}^{k} I_{p}(i_{i}(n)) - 1 \right) w(n)$
Find w(n) = 0 s.t. S>0. = So for some n-N
$ \exists \exists n s.t. \sum_{i=1}^{k} \underline{1}_{p}(L_{i}(n)) > 1 . $
Need to estimate $\sum_{n} w(n)$, $\sum_{n} 1_{p}(L_{i}(n)) w(n)$.
2 nd moment argument: Divide a BK-tuple into B equal basists.
$S^{1} = \sum_{n \sim N} \left(\sum_{i=1}^{B_{k}} \underline{\mathbb{1}}_{p}(\mathcal{L}(n)) - 1 - \sum_{\substack{q=1 \\ i \neq B_{q}}}^{B} \sum_{\substack{i \neq B_{q}}} \underline{\mathbb{1}}_{p}(\mathcal{L}(n)) \underline{\mathbb{1}}_{p}(\mathcal{L}(n)) \right)$
$>$ \diamond
for some $w(n) \ge 0$.

Here we	also need to understand $\sum_{n \sim N} I_p(L_i(n)) I_p(L_j(n)) w(n)$	• • • • •
Upper Bantes - Freit	bounds lose a factor of 4 (or ≈ 4) bena-Mannad: One can find primes in two different	•
baskets	if you start with \$5 baskets. Menikoski: \$24	•
(2020 McCrath:	For $\Box + \Box$, you can divide a tuple into	•
B equal in each	baskets and find \inf' basket.	•
		•
.		•
		•