Consecutive sums of two squares in arithmetic progressions.
(joint with Nom Kimnel)

$$
a \equiv C+D \bmod q
$$

Throughout, fix q modulus and assume $(a, q)=1$.
Q: Are there infinitely many primes $p \equiv a$ mad q ?
A: Yes (Dirichlet) Landau, Iwaniec
Stronger: equidistribution

$$
\begin{aligned}
& \pi(x ; a, q)=\|\left\{\begin{array}{l}
E_{n} \\
\sigma(x ; a, q)
\end{array} E_{p} \equiv \text { a } \bmod q\right\} \\
& \sim \frac{\pi(x)}{\varphi(q)}
\end{aligned}
$$

Q:

$$
\begin{aligned}
& \left.H^{\prime}\left(x ;\left(a_{1}, a_{2}\right), q\right):=\# p \leqslant x: \begin{array}{l}
p \equiv a_{1} \bmod q \\
p_{\text {next }} \equiv a_{2} \bmod q
\end{array}\right\} \\
& \pi^{\sigma}\left(x ;\left(a_{1}, a_{2}\right), q\right) \rightarrow \infty \text { as } x \rightarrow \infty ?
\end{aligned}
$$

Q: $\sigma_{1}\left(x,\left(a_{1}, \ldots, a_{r}, q\right)=\#\left\{p_{n} \leqslant x: \quad p_{n+i-1} \equiv a_{i} \bmod q\right\}\right.$

Conj:

$$
\rightarrow \infty^{?}
$$

Conj

$$
\sim \frac{\pi(x)}{\varphi(q)^{r}} \operatorname{v}_{\alpha / q} \sigma(x)
$$

Cony: Due to second-order terms, repeated values are less

L common
Easy lemma: If $\varphi(q)=2$ and $a_{1} \not \equiv a_{2} \bmod q$,
then $\pi\left(x ;\left(a_{1}, a_{2}\right), q\right) \rightarrow \infty$.
Thu (Shin, Banks - Freibeng - Turrage - Butterbaigh): $\pi(x ;(a, \ldots, a), q) \rightarrow \infty$ for any length.

Thm (Maynard): $\pi(x ;(a, \ldots, a), q) \gg \pi(x)$.
Open Qu: Show $\Pi(x ; \vec{a}, q) \rightarrow \infty$ in any other case.
Sums of too squares:

$$
\begin{aligned}
\mathbb{E} & =1,2,4,5,8,9,10,13, \ldots \\
& =\left\{z \in \mathbb{N}: z=x^{2}+y^{2}, x, y \in \mathbb{N}\right\}
\end{aligned}
$$

The (fermat): $n \in \mathbb{E} \Leftrightarrow n=\prod_{p} p^{\nu_{p}}, v_{p}$ even whenever $p=3 \bmod 4$.

$$
\mathbb{E}=\left(E_{n}\right) \text { where } E_{n}<E_{n+1}
$$

Thu (kimmel , k_{0}): $\forall a, b, c \bmod q$,

$$
\sigma(x ;(a, b, c), q) \rightarrow \infty \text { as } x \rightarrow \infty
$$

$\operatorname{Thm}(K i m m e l, k \ldots): \forall a, b \bmod q$,
$\sigma(x ;(a, \ldots, a, b, \ldots, b), q) \rightarrow \infty$ for any lengths of a 's and bs:

In progress: $\sigma(x ;(a, \ldots, a, b, \ldots, b), q)>\sigma(x)$
For triples:
Tim (Cooley): $\forall h, k \in \mathbb{N}$,

$$
\sum_{n \in \mathbb{N}} \mathbb{I}_{\mathbb{E}}(n) \mathbb{I}_{\mathbb{E}}(n+h) \mathbb{I}_{\mathbb{E}}(n+k) \rightarrow \infty
$$

Note techniques from quadratic forms are very helpful for sums of two squares.

Eg: inf 'ly many n w/ $n-1, n, n+1 \in E$
Pf: If $n-1, n, n+1$ is an example

$$
n^{2}-1, n^{2}, n^{2}+1 \quad \text { is another }
$$

$$
\begin{aligned}
& (n-1)(n+1) \\
& 8,9,10 \text { works }
\end{aligned}
$$

Spoiler: We can estimate certain weighted correlations of $\square+\square$,
Back to primes:

Ideas of proof (BFT/M):
Maynard: For $m \in \mathbb{N}$, let k be bigenoigh, for each k-tuple $\mid L_{1}(n)=q n+a_{1}, \cdots \quad L_{k}(n)=q n+a_{k}$,
∂ colly many n sit at least m of the values $L_{1}(n), \cdots, L_{k}(n)$ are all prime:

Trick to get BET:
(1) Choose $\left\{L_{i}(n)=q n+a_{i}\right\}$ admissible, with $a_{i} \equiv a \bmod q$
and $\quad a_{1}<\cdots<a_{k}$
(2) Define

$$
\begin{aligned}
& S=\left\{t \in \mathbb{N}: t \neq a_{i} \quad \forall i, \quad a_{1}<t<a_{k}\right\} \\
& \searrow=\left\{q_{t}: t \in S\right\} \quad \text { of } \begin{array}{l}
\text { distinct primes } \\
q_{t} \neq q
\end{array}
\end{aligned}
$$

sit. $t \neq a_{i} \bmod q$.

$$
Q=\prod_{t} q_{t}
$$

(3) CRT: $7 A \bmod Q$ sit.

$$
q A+t \equiv 0 \bmod q_{t} \quad \forall t
$$

(4) $\left\{\widetilde{L}_{i}(n)=q Q n+q A+a_{i}\right\}$ is admissible and $q Q_{n}+q A+t$ is never prime for $t \in S$.
mo ut put of Maynards tho for $\mathcal{L}_{i}(n)$ are consecutive.

$$
\begin{aligned}
& D+D \therefore q_{t} \equiv 3 \bmod 4 \\
& Q=\prod_{t} q_{t}^{2} \\
& q_{A}+t \equiv q_{t} \bmod q_{t}^{2} \\
& \equiv a \equiv a \equiv a
\end{aligned}
$$

$$
\sum
$$

$$
\equiv a \quad \equiv a \quad a
$$

$$
\equiv a \equiv b \equiv a \equiv b \equiv a
$$

$$
\begin{aligned}
& \sum_{B}^{\xi} \text { ask for a pink } \\
& \equiv a \quad \text { prime and } \\
& \text { a red prim y }
\end{aligned}
$$

Idea: Divide the tuple into baskets and look for a prime in each basket.

Dream:

$$
L_{1}(n) \therefore L_{k}(n) \quad L_{k+1}(n) \cdots L_{2 k}(n)
$$

infill often \rightarrow a prime in each basket.

How to find primes in baskets:
Maynard's original idea:

$$
S:=\sum_{n \sim N}(\underbrace{\left.\sum_{p} \mathbb{1}_{p}(l i(n))-1\right) w(n) .}_{i=1}
$$

Find $\omega(n) \geqslant 0$ st. $S>0$ for sone $n \sim N$

$$
\Rightarrow \partial n \text { st. } \sum_{i=1}^{k} 1_{p}\left(l_{i}(n)\right)>1
$$

Need to estimate $\sum_{n} w(n), \sum_{n} \mathbb{1}_{p}\left(L_{i}(n)\right) \omega(n)$.
$2^{\text {nd }}$ moment argument: Divide a $B K$-tuple into B equal baskets_

$$
\begin{aligned}
& S^{\prime}=\sum_{n \sim N}\left(\sum_{i=1}^{B k} \mathbb{I}_{p}\left(L_{l}(n)\right)-1-\sum_{l=1}^{B} \sum_{i, j \in B_{l}}^{\mathbb{1}_{p}}\left(L_{i}(n)\right) \mathbb{I}_{p}\left(L_{j}(n)\right)\right) \\
& 70
\end{aligned}
$$

for some $\quad w(n) \geqslant 0$.

Here we also need to understand

$$
\sum_{n \sim N} \underline{1}_{p}\left(L_{i}(n)\right) \mathbb{1}_{p}\left(L_{j}(n)\right) w(n)
$$

upper bounds lose a factor of 4 (or ≈ 4)
Banks - Freibeng-Maynaed One can find primes in two different baskets if you start with $\geqslant 5$ baskets.

Merikooki: $\geqslant 4$
(2020)

Mceinath: For $\square+\square$, you can divide a tuple into B equal baskets and find infly often $a \quad D+\square$ in each basket.

