D5F957C2-688E-4677-86EE-B6D5141384B8.Utah_Seminar

Tuesday, October 25, 2022 9:38 PM

Pointwise Ergodic Theorem along Subsequence Sovanlal Mondal

Notation

Let (X, Σ, μ) be a non-atomic probability space, and *T* be a measurepreserving transformation on (X, Σ, μ) . We will call the quadruple (X, Σ, μ, T) a dynamical system.

We define the Cesàro averages along a subsequence (a_n) of integers as follows:

$$A_{n \in [N]} f(T^{a_n} x) = \frac{1}{N} \sum_{n \in [N]} f(T^{a_n} x).$$
(0.1)

Pointwise Ergodic Theorem: If $(a_n) = (n)$, $f \in L^1$ then $A_{n \in [N]} f(T^n x)$ converges a.e.

Question: Is it possible to generalize the Pointwise Ergodic Theorem along any sequence (a_n) ?

Known Results

- Krengel(1971) proved that \exists an increasing sequence (a_n) such that in any aperiodic system (X, Σ, μ, T) , there exists $f \in L^1$ such that $A_{n \in [N]} f(T^{a_n} x)$ fail to converge for almost every x.
- Bellow showed in 1983 that the sequence (*a_n*) can be taken to be any lacunary sequence.
- Bourgain proved in 1988 that for any system (X, Σ, μ, T) and for any function $f \in L^2$, the averages along (n^2) i.e. $A_{n \in [N]} f(T^{n^2} x)$ converges a.e.

The following theorem is from (Jones and Wierdl 1994).

0.1 Theorem ► Jones-Wierdl -

If a sequence (a_n) satisfies $\frac{a_{n+1}}{a_n} \ge 1 + \frac{1}{(\log n)^{\frac{1}{2}-\epsilon}}$ for some $\epsilon > 0$, then in any aperiodic system (X, Σ, μ, T) , we can find a function $f \in L^2$ such that the averages $A_{n \in [N]} f(T^{a_n} x)$ fail to converge a.e.

Example: An example of such sequence is $2^{\frac{n}{(\log n)^{1/2-\epsilon}}}$.

POINTWISE ERGODIC THEOREM ALONG SUBSEQUENCE 2

0.2 Theorem ► Bourgain

There exists a sequence (a_n) satisfying $\frac{a_{n+1}}{a_n} \ge 1 + \frac{1}{(\log n)^{1+\epsilon}}$ for some $\epsilon > 0$ such that in any system (X, Σ, μ, T) , the averages $A_{n \in [N]} f(T^{a_n} x)$ converge a.e. for every $f \in L^2$.

Open Problems

0.3 Problem ► Problem 1 -Which of the above bound is sharp?

0.4 Problem ► Problem 2 -

Is it possible to improve Bourgain's range for L^p function when p > 2?

Idea of the proof

Given $\frac{a_{n+1}}{a_n} \ge 1 + \frac{1}{(\log n)^{\frac{1}{2}-\epsilon}}$. We want to show that $A_{n \in [N]} f(x + ra_n)$ fail to converge a.e. for some $f \in L^2$.

0.5 Lemma

Suppose $(v_1, v_2, ..., v_m) \in \mathbb{R}^m$ satisfies $\frac{v_{i+1}}{v_i} \ge 2N$ for $i \in [m-1]$. Let $1 \le e_1, e_2, ..., e_m \le N$. Then we can find an irrational number rsuch that $rv_i \pmod{1} \in \left(\frac{e_i-1}{N}, \frac{e_i}{N}\right) \ \forall i \in [m].$

$$\begin{array}{c} \operatorname{prode:} \quad \operatorname{Delive } B_{i::} \left\{ p: : \operatorname{Tr} \forall i \in \left(\frac{e_{i+1}}{p_{i}}, \frac{e_{i+1}$$

Suppose
$$x \in \left[\frac{N^{-1}}{N}, \frac{N}{N}\right]^{-1}$$

observe that $\forall y \in \left[\frac{\pi}{N}, \frac{\pi}{N}\right]^{-1}$, $x_{i}y \in \left[\frac{\pi}{N}, \frac{\pi}{N}\right]^{-1}$.
Hence,
 $\frac{1}{2^{N+2}} \sum_{n \in \left[\frac{\pi}{2}N+2\right]}^{-1} f(x+n\alpha_n)$
 $\Rightarrow \frac{1}{2^{N+2}} \sum_{n \in \left[\frac{\pi}{2}N+2\right]}^{-1} f(x+n\alpha_n)$
 $\Rightarrow \frac{1}{2^{N+2}} \sum_{i \in \left[\frac{\pi}{2}N+2\right]}^{-1} f(x+n\alpha_n)$
 $\Rightarrow \frac{1}{2^{N+2}} \sum_{i \in \left[\frac{\pi}{2}N+2\right]}^{-1} f(x+n\alpha_n)$
 $= \frac{1}{2^{N+2}} \cdot \sqrt{N} \cdot (K_1-K_1)$
 $= \frac{1}{2^{N+2}} \cdot \sqrt{N} \cdot \frac{2^{N+2}}{K} (since V_i has density f)$
 $= \frac{1}{2^{N+2}} \cdot \sqrt{N} \cdot \frac{2^{N+2}}{K} (since V_i has density f)$
 $= \frac{1}{2^{N+2}} \cdot \sqrt{N} \cdot \frac{2^{N+2}}{K} (since V_i has density f)$
 $= \frac{1}{2^{N+2}} \cdot \frac{N^{N-2}}{N^{N-2}} = \frac{1}{2^N} \sum_{i \in \left[\frac{\pi}{N}, \frac{\pi}{N}\right]}^{-1} f(x+\alpha_n) \gg N^2$
Thus we are able to construct a
function f , $\|if_i\|_2 = \sqrt{2}$ set sup Aneroj f(x+\alpha_n) \gg N^2
formed, N is ambihary, the arranges
cannot consistly a weaks $(2-1)$ meaning
inequality. This, by saw yerls theorem,
finishes free free preserves.