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Introduction

• The distribution of values of Dirichlet L-functions at s = 1, i.e., L(1,χ) for
variable χ has a vast literature, whereas the study of the same for the
logarithmic derivative L′

L (1,χ) is fairly recent!

• In 2009, Ihara, Murty and Shimura computed “(a,b)-th moment” i.e.

1
|Xm|

∑

χ∈Xm

P(a,b)

�

L′(1,χ)

L(1,χ)

�

where P(a,b)(z) = zazb,

m is a prime number and Xm is the set of all non-principal Dirichlet characters.

• In today’s talk we will present generalization of their results to higher
derivatives, i.e. we’ll look at

1
|Xm|

∑

χ∈Xm

P(a,b)
�

L (r)(1,χ)
�

where L (r)(s,χ) =
d r

ds r
L′(s,χ)

L(s,χ)
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Preliminaries
The Riemann zeta function

ζ(s) =
∑

n

1
ns

for Re(s)> 1

has a simple pole at s = 1 and can be analytically continued everywhere else in the
complex plane.

Thus one can write a Laurent series expansion about s = 1 :

ζ(s) =
1

s − 1
+ γ+O(s − 1).

Where γ is the famous Euler-Mascheroni constant defined as

γ := lim
x→∞

�

∑

n≤x

1
n
− log x

�

.

Motivated by this, Ihara introduced a generalization of γ for any number field K .
The Dedekind zeta function of K is defined as

ζK (s) =
∑

a

1
(Na)s

for Re(s)> 1, where the sum is taken over all integral ideals a of OK .
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Euler-Kronecker constants

If the Laurent series of ζK (s) at s = 1 is given by

ζK (s) =
c−1
s − 1

+ c0 +O(s − 1),

then the Euler-Kronecker constant is defined as: γK := c0/c−1.

It turns out γK is the constant term in the Laurent series of the logarithmic
derivative of ζK (s) at s = 1.

ζ′K
ζK

(s) =
−1
s − 1

+ γK +O(s − 1).

Definition. If we write the Laurent series

ζ′K (s)

ζK (s)
=
−1
s − 1

+ γK ,0 + γK ,1(s − 1)+ γK ,2(s − 1)2 + · · · (1)

We will call γK ,n as the nth Euler-Kronecker constant.
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Motivation

• In my thesis, I studied these constants. Particularly, I proved upper bounds for
them and interesting arithmetic formulas satisfied by them.

• Consider the completed zeta function

ξK (s) = s(s − 1)2r2
� p

|dK |
2r2πn/2

�s

Γ
� s

2

�r1
Γ (s)r2ζK (s)

Li’s Criterion ( Xian-Jin Li, 1997)

Consider the sequence (n ≥ 1)

λn =
1

(n− 1)!
dn

dsn
[sn−1 logξK (s)]

�

�

�

s=1

Then Riemann Hypothesis holds⇔ λn ≥ 0 for all n.

• Brown, F. (2004) showed an effective version of this theorem, relating
non-negativity of the first m terms of the sequence to zero free regions around
s = 1.
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Motivation

In particular, a corollary of Brown’s result :

λ2 ≥ 0 ⇒ Non-existence of the exceptional Siegel zero.

Note : A well-known result of Stark says that for 0< c < 1
4 , ζK (s) has at most one

zero in the region
1−

c

logdK
≤ σ ≤ 1, |t| ≤

c

logdK
where s = σ+ it. This zero, if it exists, is necessarily real and simple. We call this an
exceptional Siegel zero.

− Note that λ2 corresponds to the first Euler-Kronecker constant γK ,1.
− This motivated us to study γK ,1, we then realized many of the results/techniques
generalize to higher Euler-Kronecker constants as well.
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Work of Ihara, Murty and Shimura

• Let K be a number field and χ be a primitive Dirichlet character on K . Let
L(s,χ) be the L-function associated to it. Ihara et al., studied L′

L (1,χ).

Ihara, Murty and Shimura (2009)

If χ 6= χ0, then
L′

L
(1,χ) = − lim

x→∞
ΦK ,χ(x) (2)

where

ΦK ,χ(x) =
1

x − 1

∑

N(P)k≤x

�

x

N(P)k
− 1

�

χ(P)k logN(P) ( for x > 1)

Here, k is a positive integer and the sum is taken over non-archimedean primes.
Under GRH,

�

�

�

�

L′

L
(1,χ)

�

�

�

�

< 2 log log
q

dχ + 1− γK ,0 + O

�

log |dK |+ log logdχ

logdχ

�

Here, dχ = |dK |N(fχ) and γK ,0 is the Euler-Kronecker constant of K .

Samprit Ghosh Moments of higher derivatives Feb 7, 2024 7 / 22



Work of Ihara, Murty and Shimura

• Let K be a number field and χ be a primitive Dirichlet character on K . Let
L(s,χ) be the L-function associated to it. Ihara et al., studied L′

L (1,χ).

Ihara, Murty and Shimura (2009)

If χ 6= χ0, then
L′

L
(1,χ) = − lim

x→∞
ΦK ,χ(x) (2)

where

ΦK ,χ(x) =
1

x − 1

∑

N(P)k≤x

�

x

N(P)k
− 1

�

χ(P)k logN(P) ( for x > 1)

Here, k is a positive integer and the sum is taken over non-archimedean primes.
Under GRH,

�

�

�

�

L′

L
(1,χ)

�

�

�

�

< 2 log log
q

dχ + 1− γK ,0 + O

�

log |dK |+ log logdχ

logdχ

�

Here, dχ = |dK |N(fχ) and γK ,0 is the Euler-Kronecker constant of K .

Samprit Ghosh Moments of higher derivatives Feb 7, 2024 7 / 22



Generalization

We will wirte L (r)(s,χ) = d r

dsr
L′(s,χ)
L(s,χ) . Then our result is as follows :

Theorem (G.)

For χ 6= χ0, we have, unconditionally

L (n)(1,χ) = lim
x→∞

(−1)n+1 ΨK (χ,n,x)

where

ΨK (χ,n,x) =
1

x − 1

∑

N(P)k≤x

kn

�

x

N(P)k
− 1

�

χ(P)k (logN(P))n+1 ( for x > 1)

Here, k is a positive integer and the sum is taken over non-archimedean primes.
Under GRH,

L (n)(1,χ)�
2n

n!
(log(n!)+ 2 log log

q

dχ − γK ,0)(log(n!)+ log log
q

dχ)
n

Here, dχ = |dK |N(fχ) and γK ,0 is the Euler-Kronecker constant of K .
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Main idea for the proof

In two different ways we evaluate the integral :

1
2πi

∫ c+i∞

c−i∞

x s−µ

s −µ
L (n)(χ, s) ds for c � 0

On one hand we take the logarithmic derivative of the Euler product of L(s,χ)

L (s,χ) = −
∑

P ,k

�

χ(P)

N(P)s

�k

logN(P) (3)

On the other, taking the logarithmic derivative of the Hadamard product of the
completed L-function :

L (s,χ) = C −
a

2
Γ ′

Γ

� s

2

�

−
a′

2
Γ ′

Γ

�

s + 1
2

�

− r2
Γ ′

Γ
(s)+

∑

ρ

�

1
s −ρ

+
1
ρ

�

(4)

C being a constant.

• Lots of residue computation!
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Moments : Some history
Let m be a prime and Xm denote the set of all non-principal multiplicative characters
χ : (Z/mZ)×→ C× and L(s,χ) denote the corresponding Dirichlet L-function.

For any pair of non-negative integers (a,b) let P(a,b)(z) = zazb.

Theorem. (Payley, Selberg 1931)

1
|Xm|

∑

χ∈Xm

P(1,1)(L(1,χ)) = ζ(2)+O((logm)2/m)

This was later improved and by many authors. W. Zhang in 1990 generalized to the
case of P(k ,k). In 2009, Ihara, Murty and Shimura studied the moments of the
logarithmic derivative and proved the following theorem :

Theorem. (Ihara, Murty, Shimura 1931)

Unconditionally,

1
|Xm|

∑

χ∈Xm

P(a,b)(L (1,χ)) = (−1)a+bµ(a,b) +O(mε−1) (5)

for any ε > 0.
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Moments : Some history

Here µa,b is a non-negative real number defined as follows :

µ(a,b) =
∞
∑

n=1

Λa(n)Λb(n)

n2
where Λk(n) =

∑

n=n1 ···nk

Λ(n1) · · ·Λ(nk)

k > 0 and Λ(n) = logp, when n is a prime power and 0 otherwise (the von Mangoldt
function).

They showed that under GRH, the error term is about

O

�

(logm)a+b+2

m

�

- We wish to generalize their result for higher derivatives!
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�

(logm)a+b+2

m

�

- We wish to generalize their result for higher derivatives!
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Moments of higher derivatives

• I was not able to find a good reference that studies moments of higher derivatives
of L(s,χ) at s = 1 but the case of s = 1

2 has been studied by Soundararajan, Sono
etc. For example, here is a recent result :

Theorem. (Sono, 2014)

For k ≥ 2, m ∈ Z≥0 and for any ε > 0, under GRH, we have

1
φ(q)

∑′

χ(mod q)

P(k ,k)
�

L(m)

�

1
2

,χ
��

� (logq)k
2+2km+ε

where
∑′ is over all primitive Dirichlet characters modulo q.
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Moments of higher derivatives

Theorem (G.)

For any ε > 0, we have, unconditionally,

1
|Xm|

∑

χ∈Xm

P(a,b)(L ′(1,χ)) = (−1)a+bµ̃(a,b) +O
�

mε−1
�

where the implicit constant depends only on a,b.

If we define :

`1Λk(n) =
∑

n=n1 ···nk

Λ(n1) · · ·Λ(nk)(logn1) · · · (lognk) for k > 0. (6)

and for k = 0 we define it to be 1 if n= 1 and 0 otherwise.

For each pair (a,b) of non-negative integers, we define

µ̃(a,b) = µ̃(b,a) =
∞
∑

n=1

`1Λa(n) `
1Λb(n)

n2
(7)
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Some notes on the theorem

• For example, note that µ̃(0,0) = 1, µ̃(a,0) = 0 for all a > 0, and in all other cases
µ̃(a,b) > 0. In particular,

µ̃(1,1) =
∞
∑

n=1

�

Λ(n) log(n)

n

�2

• Under GRH, the error term can be improved to :

Oa,b

�

(logm)2(a+b+1)

m

�

• Further generalizations : In fact, if we define for k > 0, r ≥ 0

`rΛk(n) =
∑

n1n2 ···nk=n

�

k
∏

i=1

Λ(ni)(logni)
r

�

whereas, for k = 0, as before, it’s 1 for n= 1 and 0 otherwise. For r ≥ 0, define

µ̃(a,b)(r) =
∞
∑

n=1

`rΛa(n) `
rΛb(n)

n2
(8)
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Generalizing the theorem on moments

Theorem (G.)

For any ε > 0, we have, unconditionally,

1
|Xm|

∑

χ∈Xm

P(a,b)(L (r)(1,χ)) = (−1)(r+1)(a+b)µ̃(a,b)(r)+O
�

mε−1
�

where the implicit constant depends only on a,b.

Under GRH, the error term is

O

�

(logm)(r+1)(a+b)+2

m

�
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Outline of the proof

• Recall the function Ψ(χ,1,x) related to L ′(1,χ) :

Ψ(χ,1,x) =
1

x − 1

∑

k ,pk<x

k

�

x

pk
− 1

�

χ(p)k(logp)2

=
1

x − 1

∑

k ,pk<x

�

x

pk
− 1

�

χ(pk)(logp)(logpk)

=
1

x − 1

∑

n≤x

�x

n
− 1

�

χ(n)Λ(n)(logn)

One can then show an intermediate result : For each pair (a,b) of non-negative
integers and for x ≥m, we have

1
|Xm|

∑

χ∈Xm

P(a,b) (Ψ(χ,1,x)) = µ̃(a,b) +Oa,b

�

(log x)2(a+b+1)

m

�

(9)
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Proof Contd..

Let us write X ?
m = Xm ∪ {χ0} and

∑

χ∈X ?m

P(a,b) (Ψ(χ,1,x)) =
∑

χ∈X ?m

Ψ(χ,1,x)a Ψ(χ,1,x)b

Lemma. For some x > 1, and χ ∈ X ?
m if gχ(x) =

∑

n≤x g(x ,n)χ(n) then,

1
|X ?

m|

∑

χ∈X ?m

gχ(x)
agχ(x)

b =
m−1
∑

j=1

λ(a)(j ,x) λ(b)(j ,x) (10)

where

λ(k)(j ,x) =
∑

n1 ,··· ,nk<x
n1 ···nk≡j (modm)

k
∏

i=1

g(x ,ni)

for k ≥ 1, and for k = 0 define λ(0)(j ,x) = 1 for j = 1 and 0 for j > 1. (Recall m here
is a prime number and a,b non-negative integers.)
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Proof Contd..

Now choosing g(x ,n) = 1
x−1

�

x
n − 1

�

Λ(n) logn, we get, gχ(x) = Ψ(χ,1,x).

Then one can show

λ(k)(j ,x) =
1

(x − 1)k
∑

n1 ,··· ,nk<x
n1 ···nk≡j (mod m)

k
∏

i=1

�

x

ni
− 1

�

Λ(ni) logni

=
`1Λk(j)

j
+O

�

(log x)2k+1

m

�

• Once we have

1
|Xm|

∑

χ∈Xm

P(a,b) (Ψ(χ,1,x)) = µ̃(a,b) +Oa,b

�

(log x)2(a+b+1)

m

�

to get the error term we then estimate

1
|Xm|

∑

χ∈Xm

�

�P(a,b)(L ′(1,χ))−P(a,b)(Ψ(χ,1,x))
�

�
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Proof Contd.

To start with, one uses an elementary inequality

|P(a,b)(z +w)−P(a,b)(z)| ≤ (a+ b)|w |(|z |+ |w |)a+b−1.

Thus,
�

�P(a,b)(L ′(1,χ))−P(a,b)(Ψ(χ,1,x))
�

�≤ (a+ b)
�

�Ψ(χ,1,x)−L ′(1,χ)
�

� ·
��

�Ψ(χ,1,x)−L ′(1,χ)
�

�+
�

�L ′(1,χ)
�

�

�a+b−1

We then use zero sum estimates to estimate these terms and get the result.
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A Theorem on distribution

Theorem. (G.)
For any s ∈ C with σ= Re(s)> 1 there exists a function Mσ : C→ R satisfying,
Mσ(w)≥ 0, and

∫

CMσ(w) |dw |= 1, such that

Avgχ Φ(L ′(χ, s)) =

∫

C
Mσ(w) Φ(w) |dw | (11)

holds for any continuous function Φ on C. Here, if we write, w = x + iy then
|dw |= (2π)−1dxdy .

Here K be either Q or an imaginary quadratic number field, χ runs over all Dirichlet
characters on K with prime conductors normalized by the condition χ(℘∞) = 1 ; The
average of a complex valued function φ(χ), is defined as :
Avgχφ(χ) = limm→∞ AvgN(f)≤mφ(χ) where

AvgN(f)≤mφ(χ) =

∑

N(f)≤m

�

∑

fχ=f φ(χ)
�

/
∑

fχ=f 1
∑

N(f)≤m 1
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Thank you!
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